

A Top Level design for the Java Implementation based on

Patrick Schone and Daniel Jurfafsky's article.

Submitted 19/2/2003

Danny Shacham

Yehoyariv Louck

21
Product overview

21.1
The problem

21.1.1
Hebrew special problems

31.2
The proposed solution

42
Terms and acronyms

43
Main requirements and constraints

54
Software architecture

54.1
Main function groups

54.2
Software modules

54.2.1
Data structure classes.

54.2.1.1
Word class.

54.2.1.2
WordCounter class.

54.2.1.3
SuffixCounter class.

64.2.1.4
Rule class.

64.2.1.5
PPMV class.

64.2.1.6
Ruleset class.

64.2.1.7
NCS class.

64.2.1.8
Trie class.

74.2.2
Handler’s classes.

74.2.2.1
CorpusHandler class.

74.2.2.2
PPMVHandler class.

74.2.2.3
LSAHandler class.

74.2.2.4
NLPUtill class.

84.3
Data flow

94.4
Technologies in use

95
Open problems.

106
Testing and results

127
Hebrew adjustments.

1 Product overview

Morphology induction is a sub problem of important tasks like automatic machine learning of readable dictionaries and grammar induction. The quest for efficient method for analyzing of word-forms is no longer only an academic research topic.

However to develop such analyzer requires human intervention that results in slower development time and increase in costs.

1.1 The problem

For the reasons expressed above we are interested in an automatic knowledge-free morphology induction. Till now most state of the art techniques for constructing such morphological analyzer have relied on statistically hypothesized stems and affixes to choose which stem and affix are considered legitimate.

These techniques are exposed to the following problems:

· The technique is limited to inflectional languages only.

· Valid affixes may be applied inappropriately.

· Morphology ambiguity may arise.

· Non-productive affixes may be pruned.

1.1.1 Hebrew special problems

The Hebrew language contains several additional problems in comparison with other inflectional languages such as English.

Unlike the English language Hebrew is “richer” in its inflection variety. Moreover, in the Hebrew language we can find not only more extensive use of prefixes and suffixes but also extensive use of infixes. For these reasons the use of statistical algorithms for Hebrew analysis will prove inefficient due to the fact that they are concentrating mainly on finding suffixes.

Another limitation imposed due to Hebrew’s richness is that it will require a larger corpus.

1.2 The proposed solution

This software implements the solution proposed by Patrick Schone and Daniel Jurfafsky in their article “Knowledge-Free Induction of Morphology Using Latent Semantics Analysis”.

Their algorithm focuses on inflectional languages and needs no human intervention or pre-given knowledge. The technique incorporates word semantics in order to resolve some of the problems introduced earlier.

The proposed algorithm uses Latent Semantic Analysis (LSA) in order to automatically identify semantic information from the corpus and using it to decide which words can be considered legitimate variants of each other.

The algorithm consists of 4 stages:

· Stage 1: Identify potential suffixes – in order to select affixes we use a trie data structure with the p-similarity technique. Using this method we identify and select k – most frequent suffixes.

· Stage 2: Finding potential variants words – using the suffixes found in the pervious stage we find a list of pairs of potential morphological variant words that later on will be examined as related.
· Stage 3: Developing semantic vectors – for each word found in stage 2 we build a semantic vector that is used to “grade” the distance between the pairs of words, and by that to "grade" the so called semantic relation between them, which is actually grading the number appearances of two words in a close neighborhood.
· Stage 4: select variants with similar semantic vectors – only pairs of words (that were found in stage 2) that have a “good” grade, which is computed using statistic methods that compute this "grade" comparing to the other PPMVs in its Rulest and now called Pr (true) are considered to be semantically related.
Note: for more detailed information please see the original article.

2 Terms and acronyms

Rules – a pair of suffixes, chosen from the K-most-frequent suffixes list.
PPMV – “pair of potential morphological variants” - two words sharing the same

stem and the same rule.

Ruleset - the set of all PPMV’s that have the same rule in common.

SVD - “singular value decomposition” a technique that decomposes a matrix

A into three matrices U, D and V’.

NCS -
“normalized cosine score” - an equation that uses the calculation of cosine between the semantic vector of a PPMV and the semantic vectors of 200 randomly chosen word to give a Z-score to the PPMV.

(For the exact equation please see the original article).

Pr (true) – semantic based probability which determine a threshold for legitimate PPMV’s in a ruleset.

3 Main requirements and constraints

This software will try to implement the algorithm introduced by Patrick Schone and Daniel Jurfafsky in their article “Knowledge-Free Induction of Morphology Using Latent Semantics Analysis”.

The implementation will be portable and will be efficient as possible (performance wise).

The software will make the necessary adjustments in order to make the algorithm compatible with corpuses in the Hebrew language.

4 Software architecture

Our implementation of the original and adjusted algorithm is arranged as a set of modular object oriented classes that can be reused in similar techniques and in a future derived algorithm.

In order to better understand the implementation we should discuses the following:

4.1 Main function groups

Our implementation is divided into two main function groups

· Data structure modules – used to represent the data which we work on, such as trie nodes or PPMV’s.

· Activation modules (handlers as we call them) – modules that uses the data stored in the data-structure modules in order to perform specific calculations like finding k –most frequent affixes from the tries or build rulesets from the trie. .

4.2 Software modules

Let’s discuss each software module in details.

4.2.1 Data structure classes.

4.2.1.1 Word class.

Represents a word in the corpus. The word is represented as stem and suffix. Both the stem and the suffix are saved as strings.

4.2.1.2 WordCounter class.

Represents the statistical data regarding a specific word in the corpus. The class contains Word object and it statistical data (currently only the number of its appearances in the corpus).

4.2.1.3 SuffixCounter class.

Represents statistical data relevant to a given suffix. This class contains a suffix (as a string) and a list of all the stems in the corpus the have this suffix.

4.2.1.4 Rule class.

Represents a rule (see section 2) a rule is internally represented as two suffixes.

4.2.1.5 PPMV class.

Holds a stem (as a string) and a rule object. Thus it actually contains two words sharing the same stem. The class enables to extract the two words it contains.

4.2.1.6 Ruleset class.

Hold a rule object and a list of PPMV’s objects sharing this rule.

4.2.1.7 NCS class.

Holds the NCS (see section 2) score of a given PPMV.

4.2.1.8 Trie class.

Represents a node in a trie data structure. Contains the following data:

· The path to its root.

· All possible endings till its leaves.

· All nodes descending from it.

· An indication whether it is the end of a word in the corpus.

The class can add a node or to check for existence of a given word from these node down the trie.

4.2.2 Handler’s classes.

4.2.2.1 CorpusHandler class.

A utility class that can work on a given corpus (text file).

The class can extract the k-most frequent suffixes from the corpus and to represent the corpus both as an array of strings and as a trie, according to a given p-similarity value.

4.2.2.2 PPMVHandler class.

Can build all the rulesets from a given corpus with a given k most frequent suffixes.

4.2.2.3 LSAHandler class.

Makes all the calculations regarding the latent semantic analysis technique. Such as finding N most frequent words in the corpus and calculating the NCS score for each PPMV for a given ruleset.

4.2.2.4 NLPUtill class.

This class is the container that is responsible for starting the process of analyzing a given corpus according to the required given parameters (such as the values of the p- similarity the k most frequent suffixes and N most frequent words).

This class can report its progress and to log its results. It can also construct the data structure in a way suitable for the Hebrew adjusted algorithm.

4.3 Data flow[image: image1.emf]NLPUtill class

The common thread the activates and combines all handlers

activities

Store

results in a log

file.

Reports it

analysis

progress

 corpusHandler

 build the trie representation

 of the corpus and extract

 the k- most frequent suffixes

Tire node

class

suffixCounter

class

Word

class

PPMVHandler

 build rules rulsets and the list

 of PPMV’S for all the k- most frequent

 suffixes

PPMV

class

Data transfer

LSAHandler

 build semantics vector

 for all PPMV’s and computes

 the NCS grades for them

Jmat library

NCS class

4.4 The software Technologies in use

is written in pure java using an advance open source math library (called jmat) for matrices operations support.

5 Open problems.

We still have technical difficulties calculating the NCS score and the Pr (true) value of PPMV’s and rulesets. The difficulties arise from some mathematical lack of knowledge.

6 Testing and results

As a first stage of testing the software was given a English corpus with approximately 65,000 tokens (AROUND THE WORLD IN EIGHTY DAYS ….by Jules Verne). The results were outputted into two text files in the following format:

[Stem1(affix] [stem2(affix] NCS.

For each PPMV found, we show the stems the affix and the NCS of this pair.
One file contains all PPMV’s that have NCS greater then the threshold and the second file contains all PPMV’s with NCS less then the threshold.

We used zero as a threshold between true and false since at this stage we are unable (technically) to calculate the Pr(true) which is the real true/false criteria per rule-set.

After careful study of the result we have reached the following conclusions:

1. It is clear that essentially the algorithm does work.
2. Although our implementation is not complete we were able to establish semantic relation between pairs of words (PPMV’s) that are both simple inflection of each other like: minutes and minute(NCS: 6.919) or assure and assured (NCS: 5.57) but more importantly the algorithm was able to show semantic relations between pairs of words that have irregular form of inflection like: designated and design (NCS: 4.19) or pursuit and pursuing (NCS: 3.515).

3. The ability to find semantic relations between words that are both of regular and irregular form of inflection suggests that the introduction of semantic knowledge indeed enable us to reduce the ambiguity in morphological induction.

4. However, despite some promising results the algorithm produced some very disappointing connection for example: the algorithm found that there is a strong semantic connection between forget and forgive (NCS: 7.8) which we know that have no semantic connection at all.
Although we know that the NCS is not the final criteria that decides the correlation of two words but the PR is and it is possible that those two words that had a high NCS, after computing this NCS according to their Ruleset their PR will be much lower.
5. Another problem we discovered is pairs of very simple words that we expected the algorithm to recognize as pair of morphological variants but in fact it found very small correlation between them, such as : talking and talks (NCS: (-3.6 .

6. Despite these discouraging results we must put things in perspective. We must not forget that the results we have shown and studied were produced by an incomplete system. As mentioned earlier our implementation is still missing one of its key ingredients which is the calculation of Pr(true) for every rule-set. For now we considered the value 0 as a threshold between “good” and “bad” NCSs, but in fact this may not be their correlation, since there could be different results when computing their Pr(true) .
7. In one rule set, for example, an NCS of -5 may be computed as a positive Pr(true) which indicates a better semantic relationship while the same NCS grade in a different rule-set will be computed as totally different PR, which will be much lower and means that there is no semantic relations between these two words.

8. In the second stage of the testing the software was given a Hebrew corpus with approximately 65,000 words. The output format of this testing stage was the same as the first test.

9. In this test too there were some very good results in their appearance, for example the system found strong semantic correlation between ‘vnushghbh’ and ‘nushghbh’ (NCS: 1.12) this result is surprising because it was able to understand that ‘v’ is a prefix and not part of the stem. Another kind of good result was a pair that the system found them semantic related even though one word of the pair contained not only prefix but also infix. For example: ‘vchbktunhu,’ and ‘ktunhu,’ (NCS: 3.6).

10. Our main conclusion from those results is that there is a strong relation between the NCS of PPMV and their final Pr. All of the pairs that shouldn't have a good correlation has a relative low NCS. However this result is not the final parameter that we are looking for when trying to decide if this PPMV has a good correlation or not, but the Pr is.

11. In general we can say that the algorithm shows some promising results regarding the Hebrew language although it is clear that there are some issues that is does not addresses at (for example the problem of prefixes and infixes the can be found in Hebrew corpuses abundantly). It was clear to us that if we would like to improve the results of the algorithm on Hebrew corpuses we must make some adjustments. We hope that our “improvements” of the original algorithm (as they are described in the next section) will in fact cause improvement in the results.

7 Hebrew adjustments.

The original article did not address the special problems of the Hebrew language (as detailed in section 1.1.1).

In our solution for this problem we have tried to be consistent with the original article guideline (mainly keeping the algorithm knowledge-free).

In order to adjusted the original algorithm to address some of the problems in Hebrew, we tried to isolate the main difference between those languages. We have identified the extensive use of prefixes in Hebrew as one of the main reasons that may cause the original algorithm to work improperly on Hebrew corpuses and came up with the following adjustments to the original technique, so it tries to compensate for it.

The Hebrew adjusted algorithm contains 5 stages:

· Stage 1: Identify potential prefixes – we use a reversed words trie to identify k-most frequent prefixes in the corpus.

· Stage 1: Identify potential suffixes – in order to select suffixes we use regular order trie with the p-similarity technique. Using this method we identify and select k – most frequent suffixes. the trie is build so it will identify stems that are p-similar up to one of the most frequent prefixes found in stage one.

This means that for a example for the given rule ("ים" and null) the following PPMV is legitimate: "מתחשבים" and "התחשב" if both "הת" and "מת" where in the k-most frequent affixes calculated in stage 1.
· Stage 2: Finding potential variants words – using the suffixes found in the pervious stage we find a list of pairs of potential morphological variant words.
· Stage 3: Developing semantic vectors – for each word found in the stage 2 we build a semantic vector that is used to “grade” the pairs of words.
· Stage 4: select variants with similar semantic vectors – only pairs of word (that where found in stage 2) that has a “good” grade are considered to be semantically related.
� EMBED Visio.Drawing.6 ���

_1107152540.vsd
�

�

�

NLPUtill class�

The common thread the activates and combines all handlers activities �

Store
results in a log file.�

Reports it analysis progress�

 corpusHandler
 build the trie representation
 of the corpus and extract
 the k- most frequent suffixes �

Tire node class�

suffixCounter
class�

Word
class�

PPMVHandler
 build rules rulsets and the list
 of PPMV�S for all the k- most frequent
 suffixes �

PPMV
class�

Data transfer�

LSAHandler
 build semantics vector
 for all PPMV�s and computes
 the NCS grades for them�

Jmat library �

NCS class�

