
From “hand-written” to computationally
implemented HPSG theories

Nurit Melnik

Caesarea Rothschild Institute
for Interdisciplinary Applications

of Computer Science
Haifa University

nurit@eyron.com

August 24, 2005

Motivations

Why implement an HPSG theory?

• Practical NLP applications (e.g,. The DELPHIN Collaboration)

• Language documentation (e.g., The Montage project (Bender et al.,
2004))

• Evaluation of linguistic hypotheses

1

Motivations

Why implement an HPSG theory?

• Practical NLP applications (e.g,. The DELPHIN Collaboration)

• Language documentation (e.g., The Montage project (Bender et al.,
2004))

• Evaluation of linguistic hypotheses

– internal consistency
– interaction of a set of hypotheses
– test suites
– ‘real’ corpus data

2

The “Hand-written” Theory

Verb-initial Constructions in Modern Hebrew (Melnik, 2002)

• SV-VS word order alternations

• Subject-verb agreement patterns

• Valence alternations: canonical and subjectless

• Possessive Dative Construction

3

Platforms

The LKB system (The Linguistic Knowledge Building; Copestake, 2002)

• Primary engineering environment of the LinGO English Resource
Grammar (ERG; (Copestake & Flickinger, 2000))

• Implemented in Common Lisp

TRALE (Meurers et al., 2002)

• An extension of the Attribute Logic Engine (ALE; (Carpenter and Penn,
1995 & 1999)

• Implemented in SICStus Prolog 3.8.6.

4

Dimensions of Comparison

• Type definition

• Exhaustive Typing and Subtype Covering

• Principles

• Lexical rules

• Grammar rules

• Definite relations

• Semantic representation

• Grammar evaluation

5

Type Definition

Properties

• The type’s hierarchical relation to other types

• Appropriateness Conditions

• Type Constraints

6

The Type Hierarchy

The glb condition : Every set of types which are compatible must have a
unique greatest subtype (greatest lower bound (glb) or most general unifier
(mgu)).

x

a b

ab ba

⇒

x

a b

glb1

ab ba

• The LKB automatically restructures a violating hierarchy by inserting glb
types (see above).

• TRALE produces an error message.

7

The Type Hierarchy

Multi-dimensional inheritance

verb-wd

AGREEMENT VALENCE

personal-vb-wd impersonal-vb-wd canonical-vb-wd subjectless-vb-wd

pers-canon-vb-wd impers-canon-vb-wd impers-subj-less-vb-wd

• The LKB and TRALE do not provide a way for implementing multi-
dimensional inheritance.

8

Type Definition

Properties

• The type’s hierarchical relation to other types

• Appropriateness Conditions: The features which a type has and the
values these features can have

• Type Constraints: Values of embedded features and path equations

Type Inheritance

• In TRALE inheritance is monotonic.

• The LKB allows default inheritance in the type hierarchy (Lascarides and
Copestake, 1999).

9

Type Definition - The LKB

sign := *top* &
[ORTH string,
SYNSEM synsem,
ARGS *list*
].

agr-pers-vb-wd := verb-wd &
[SYNSEM.LOC.CAT [HEAD.AGR #agr,

VAL.SUBJ < synsem &
[LOC [CAT.HEAD noun &

[AGR #agr]]] >]].

impers-canon-vb-wd := val-canon-vb-wd &
agr-impers-vb-wd &

[SYNSEM.LOC.CAT [VAL.SUBJ < synsem &
LOC.CAT.HEAD non-nom-pos] >]].

10

Type Definition - TRALE

The signature

bot
sign phon:ne_list synsem:synsem

lex_item
word

verb_wd
agr_personal_vb_wd

personal_canonical_vb_wd
agr_impersonal_vb_wd

impersonal_canonical_vb_wd
impersonal_subjectless_vb_wd

val_canonical_vb_wd
&personal_canonical_vb_wd
&impersonal_canonical_vb_wd

val_subjectless_vb_wd
&impersonal_subjectless_vb_wd

11

Type Definition - TRALE

The theory

agr_personal_vb_wd *>
(synsem:loc:cat:(head:agr:Agr,

val:subj:[loc:cat:head:(noun,agr:Agr)])).

impersonal_canonical_vb_wd *>
(synsem:loc:cat:val:subj:[loc:cat:head:non_nom_pos]).

12

Exhaustive Typing and Subtype Covering
(aka Open vs. Closed World Reasoning)







verb

AUX bool

INV bool













main-verb

AUX −

INV −













aux-verb

AUX +

INV bool







• The LKB accepts







verb

AUX −

INV +







• TRALE rejects







verb

AUX −

INV +







and promotes







verb

AUX −

INV bool







to







verb

AUX −

INV −







13

Principles

Implicational Constraints:
Type Antecedents vs. Complex Antecedents

Example:
The Verbal Agreement Principle in Modern Hebrew

• Verbs with NP subjects exhibit full agreement with the subject.

• Verbs with non-NP subjects exhibit impersonal 3SM agreement.

• Subjectless verbs exhibit impersonal 3SM agreement.

14

Implicational Constraints with Type Antecedents

verb-wd

AGREEMENT VALENCE

personal-vb-wd impersonal-vb-wd canonical-vb-wd subjectless-vb-wd

pers-canon-vb-wd impers-canon-vb-wd impers-subj-less-vb-wd

• pers-canon-vb-wd : Agreeing verbs with NP subjects

• impers-canon-vb-wd : Impersonal-agreement verbs with non-NP subjects

• impers-subj-less-vb-wd : Subjectless impersonal-agreement verbs

15

Implicational Constraints with Complex Antecedents

verb-wd

VALENCE

canonical-vb-wd subjectless-vb-wd

• Agreeing verbs with NP subjects






verb-wd

SYNSEM | ... | SUBJ
〈

[

LOC | CAT | HEAD noun
〉

]







→












verb-wd

SYNSEM | LOC | CAT







HEAD | AGR 1

VAL | SUBJ
〈

[

LOC | CAT | HEAD | AGR 1

〉

]



















• Impersonal-agreement verbs






verb-wd

SYNSEM | ... | SUBJ elist
∨

〈

[

LOC | CAT | HEAD non-noun
]

〉







→
[

verb-wd

SYNSEM | LOC | CAT | HEAD | AGR 3SM

]

16

Principles

Type Antecedents vs. Complex Antecedents

• The LKB support implicational constraints with type antecedents.

• TRALE support implicational constraints with type antecedents and
complex antecedents.

Disjunction

• TRALE’s description language includes disjunction.

• The LKB’s description language does not include disjunction.

17

Lexical Rules

The LKB

• Lexical rules are viewed as unary grammar rules

• LRs relate a mother structure (the output) to its daughter (the input)

• Explicit specification of information that is copied over from input to output

• Hierarchical rules with defeasible default values

TRALE - two mechanisms

• The traditional ALE mechanism
– Requires explicit copying over from input to output

• Description Level LRs (DLRs; Meurers & Minnen, 1997)
– Employs default reasoning to copy over from input to output

18

Fixed vs. Variable Arity in Grammar Rules

The challenge




















hd-comp-ph

COMPS 〈〉

HD-DTR
[

COMPS
〈

1 ,...,n
〉

]

NON-HD-DTRS
〈

[

SYNSEM 1

]

,...,
[

SYNSEM n
]

〉





















The solutions

• In the LKB the number of daughters in a grammar rule is fixed

– Separate rule for each arity
OR

– Binary branching

• TRALE provides a special cats> operator for variable arity rules

19

Definite Relations

TRALE provides a Prolog-like definite logic programming language with
which the grammar writer can encode definite relations.

• A grammar rule

head_complement_schema_rule ##
(hd_comp_phrase,
hd_dtr:Head,
non_hd_dtr:CompDtrs)

===>
cat> (Head,word, synsem:loc:cat:val:comps:CompDtrsSynsem),
goal> list_sign_to_synsem(CompDtrs,CompDtrsSynsem),
cats> CompDtrs.

• A definite relation

sign_to_synsem(synsem:Synsem,Synsem) if true.
list_sign_to_synsem([],[]) if true.
list_sign_to_synsem([H|T], [S|R]) if

sign_to_synsem(H,S),
list_sign_to_synsem(T,R).

20

Semantic Representation

• The LKB contains a module for processing Minimal Recursive Semantics
(MRS) representations (Copestake and Flickinger, 2000).

• TRALE provides a module which is an implementation of Lexical
Resource Semantics (Penn and Richter, 2004).

21

Grammar evaluation

Grammar evaluation tools

• Batch parsing of test suites (The LKB and TRALE)

• The [incr tsdb()] package (The LKB and TRALE)

Platform performance comparison

• No evidence from the test case grammar

• Comparison of TRALE’s MERGE (Ver. 0.9.6) and the LKB’s ERG (Penn,
2004)

– Similar coverage
– Different internal systems
– MERGE runs 300 times slower than the ERG

22

Conclusion

Expressiveness

• TRALE

–
√

Implicational constraints with complex antecedents
–

√
Variable arity in grammar rules

–
√

Definite relations
–

√
Exhaustive Typing and Subtype Covering

• LKB

–
√

Default inheritance

23

Conclusion

Accessibility - computational skills required

• LKB

–
√

Automatic correction of glb violations
–

√
Interactive type hierarchy display

–
√

Matrix open-source starter-kit (Bender et al,. 2002)
–

√
Runs on Windows

• TRALE

–
√

Grisu’s user-friendly feature-structure and syntactic-tree display
BUT

– ∼ Programming Prolog definite relations
– ∼ Parametric macros
– ∼ Does not run on Windows (modulo the Grammix CD Rom; Müller)

24

Final Note

Should “hand-written” HPSG theories

=

computationally implemented HPSG theories ?

25

Thank You

26

