
A compiler from XFST to FSA

Project documentation

Yael Cohen-Sygal

Laboratory in natural languages processing – winter semester 2002-2003

1

Contents

1 Introduction 3
1.1 Finite state technology . 3
1.2 The goal of this project . 3
1.3 The basic design of this project . 3

2 XFST operators and their translation into the FSA Utils 4
2.1 Symbols . 4
2.2 Simple operators . 5
2.3 Restriction . 9
2.4 Replacement . 10

2.4.1 � � (obligatory, upper to lower replacement) . 10
2.4.2

� � ��� (optional, upper to lower replacement) . 15
2.4.3 � � (obligatory, lower to upper replacement) . 17
2.4.4

� � � � (optional, lower to upper replacement) . 19
2.4.5 � � � (obligatory, upper to lower, lower to upper replacement) 20
2.4.6

� � � ��� (optional, upper to lower, lower to upper replacement) 22
2.4.7 � � � (obligatory, upper to lower, left to right, longest match replacement) 23
2.4.8 � � (obligatory, upper to lower, left to right, shortest match replacement) 25
2.4.9 � � � (obligatory, upper to lower, right to left, longest match replacement) 27
2.4.10 � � right (obligatory, upper to lower, right to left, shortest match replacement) . . . 28

2.5 Markup . 29
2.6 Boundary symbol for restriction and replacement . 31
2.7 Order of Precedence . 33
2.8 Advanced XFST techniques . 33

3 Results and their analysis 34
3.1 Theoretical aspect . 34
3.2 Practical results - comparison between XFST and FSA . 35

4 Possible enhancements and future work 35

5 Installer’s Guide 36

6 User’s Guide 37
6.1 The structure of the input file . 37
6.2 How to run the program . 38
6.3 The structure of the output file . 38
6.4 How to run the output file on FSA . 39
6.5 Example files . 39

7 programmer’s guide 40

8 Acknowledgements 41

2

1 Introduction

1.1 Finite state technology

Finite-state technology is widely considered to be the appropriate means for describing the phonological
and morphological phenomena of natural languages.

Finite state technology has some important advantages, making it most appealing for implementing
natural language morphology. One can find it very hard, almost impossible, to build the full automaton or
transducer describing some morphological phenomena. This difficulty arises from the fact that there are a
great number of morpho-phonological processes combining together to create the full language. However,
it is usually very easy to build a finite state machine to describe a specific morphological phenomenon. The
class of regular languages is closed under union, concatenation, intersection and complementation. The
class of regular relations is closed under union, concatenation and composition (but not under intersection
and therefore complementation). These properties make it most convenient to implement each phenomenon
independently and combine them together using the closure properties. Moreover, finite state techniques
have the advantage of being efficient in their time and space complexity, as the membership problem is
solvable in time linear in the length of the input. Moreover, there are known algorithms for minimizing and
determinizing automata and some restricted kinds of transducers.

Several FS “toolboxes” exist which facilitate the stipulation of phonological and morphological rules
by extending the language of regular expressions with additional operators. Such toolboxes typically in-
clude a language for extended regular expressions and a compiler from regular expressions to finite-state
devices (automata and transducers). Unfortunately, there are no standards for the syntax of extended regular
expression languages.

1.2 The goal of this project

The goal of this project is to design and implement a compiler which will translate grammars, expressed in
the XFST finite-state toolbox of Xerox, to grammars in the language of the FSA Utils package. For the most
part, there is a strong parallelism between the languages, but certain constructs are harder to translate and
require more innovation.

The contribution of this project lies in the fact that the Xerox utilities are proprietary; compilation to FSA
enables us to use grammars developed with the Xerox tools on publicly available systems. Furthermore, this
project offers parallel investigation of two similar, yet different, systems. Finally, such a compiler enables
us to compare the performance of the two systems on very similar benchmarks.

1.3 The basic design of this project

The XFST grammar is proprietary and therefore can not be obtained, thus, the first step towards creating
a compiler was to extract and reconstruct the grammar of XFST and represent it (as possibly using the
available documentation and existing software) in some formal grammar. Next, each XFST construct was
translated into FSA. Part of the XFST constructs could be translated easily into FSA since the FSA consists
of equivalent constructs (although with a different syntax), but some which does not exist in the FSA Utils
had to be implemented from scratch (mainly all the replacement,restriction and markup rules).

3

2 XFST operators and their translation into the FSA Utils

In this section all XFST operators are presented. For each operator we explain its meaning and show how
to translate it into the FSA Utils syntax. For the part of XFST operators that have an equivalent operator
in FSA, we simply describe the syntax of the equivalent FSA operator; For the part that has no equivalent
operator in FSA we describe for each operator how it can be constructed from the operators that have already
been translated. Notice that when translating using previously translated operators, we write the previously
translated operators using the XFST syntax (and not the FSA). It is done for simplicity reasons, and since
we assume that most of the readers of this paper are more proficient in XFST syntax than in FSA syntax. We
have not been able to find the equivalent translation from XFST into FSA for all XFST operators, mainly
since we could not obtain full documentation for the creating algorithms for all XFST operators, and in
particular for the more complicated ones (e.g., restriction, markup and replace rules). For some operators
the translation could not be done from other reasons that will be specified for each case separately.

2.1 Symbols
� XFST syntax: �

Meaning: Single symbol a.

Translation into FSA syntax: ’a’. The characters ’ ’ function as escape characters in FSA. We use
the escape character to avoid of cases were a legitimate XFST character is not so in FSA without the
escape character (a good example are capitals letters that must be escaped in FSA but not in XFST).

� XFST syntax: 	
Meaning: Escape character. The escape character, 	 , eliminates any special meaning of the following
character. Thus
 , � , � , etc. can be used as ordinary symbols by prefixing them with 	 . The ordinary
percent sign can be expressed by 		 .

Translation into FSA syntax: The escape character 	 is eliminated since FSA uses ’ ’ as escape
syntax, and any string or character is escaped when being translated into FSA to avoid mistranslation.
In the case of literally question mark in XFST (��) the translation into FSA is escape(?) and not ’?’
since ’?’ is not accepted by FSA.

� XFST syntax: 	�
Meaning: Single symbol � . The 	 means that the following symbol will be taken literally, otherwise,
� would be interpreted as a regular expression operator. Note that 	�� is the same as a.

Translation into FSA syntax: ’+’. The explanation is as above.

� XFST syntax: ����� �
Meaning: Single symbol a. Double quotes have no special meaning for symbols composed of ordinary
letters.

Translation into FSA syntax: ’a’. The double quotes are replaced with ’ ’, the escape syntax of FSA.

� XFST syntax: 	�������	 �
Meaning: Multi-character symbol +ab-. The % means that the following symbol will be taken literally.
Otherwise, + and - would be interpreted as regular-expression operators.

Translation into FSA syntax: ’+ab-’. The escape syntax is added as explained above and the XFST
escape character 	 is removed except in cases where 		 appears and then only one is removed (since
in XFST 		 means the literal percent).

4

� XFST syntax: � ������� � � �
Meaning: Multi-character symbol +ab-. Symbols enclosed in double quotes can contain characters
that otherwise are used as operators (� ,
 , -, +, * etc.).

Translation into FSA syntax: ’+ab-’. The double quotes are replaced with the escape syntax of FSA ’
’ as explained above.

� XFST syntax: �
Meaning: Any symbol. If interpreted as a pair, ? denotes the identity relation. Note that in a displayed
network ? only represents unknown symbols. In a regular expression, ? in addition covers all symbols
that explicitly occur in the regular expression.

Translation into FSA: ?

� XFST syntax: � or ��� or � ��� �
Meaning: Epsilon symbol, the empty string.

Translation into FSA: [].

� XFST syntax: !���#"�$&%
Meaning: Single character brace. Each character between the braces is taken as a single-character
symbol. For example !�'�#"�% will be represented by the concatenation of four single symbols, a, � �(� �
(space), b and c rather then the concatenation of the single symbol a and the multi character symbol
bc when there were no braces around.

Translation into XFST: [a,b,c,d] as [,] is the union operator in FSA. The 	 character in XFST func-
tions as an escape character also in this context, thus he is removed as explained above.

2.2 Simple operators
� XFST syntax:)+*

Meaning: Kleene star. The language or relation A concatenated with itself any number of times,
including zero times. Note that ?* denotes the universal language.

Translation into FSA:),*
� XFST syntax:)-�

Meaning: Iteration (Kleene plus). The language or relation A concatenated with itself one or more
times. A+ includes [A], [A A], [A A A], and so on ad infinitum. ?+ is the language of all nonempty
strings.

Translation into FSA:).�
� XFST syntax:)/
10

Meaning: Union of the languages A and B. Set of strings that are in A or in B or in both languages.

Translation into FSA: !)32405%
� XFST syntax:)6�60

Meaning: Intersection of the languages A and B. Set of strings that are in A and in B.

Translation into FSA:)6�70

5

� XFST syntax:) � 0
Meaning: A minus B. Set of strings that are in A and not in B.

Translation into FSA:) � 0
� XFST syntax: 81)

Meaning: Term complement. The set of all single-symbol strings that are not in the language A. 81)
is equivalent to �9� �):� . Thus 81� contains “b” and “c” but not “a” or the empty string, and no strings
with more than one symbol like “aa” or “aaab”. Note that 8;� denotes the null language because ?
covers all single-symbol strings.

Translation into FSA: This operator does not exist in FSA but can be constructed using previous
operators by �9<6):�=�>�

� XFST syntax: <6)
Meaning: Complement. The set of all strings that are not in the language A. For example, <?�
contains �@� � , “aa”, and “aaa” but not “a”. The complement of the null language, <�8;� , is the universal
language, and vice versa.

Translation into FSA: <7)
� XFST syntax:)-A10

Meaning: A ignoring B. Set of all strings that would be in A if all substrings of B (regarded as noise)
were removed. (a/x contains ”a”, ”xa”, ”xaxx”, etc.)

Translation into FSA: ignore(A,B).

� XFST syntax:),BCADB90
Meaning: A ignoring internally B. Definition: A./.B = [A/B] - [B ?*
 ?* B] (e.g. [a a a]/x contains
”aaa”, ”aaxa”, ”axxxaxa”, etc.)

Translation into FSA: This operator does not exist in FSA but can be constructed using previous
operators by [A/B] - [B ?*
 ?* B]

� XFST syntax: E1)
Meaning: Containment. The set of strings or string pairs containing at least one instance of A as a
subpart. For example, ”bac” is a string in the language denoted by E1� , speaking informally, “bac” is
in E1� . Here A can denote a relation.) is equivalent to �9�F*G)7�H*I� . E��1� denotes the universal language.

Translation into FSA: E1)
� XFST syntax: EDB9)

Meaning: Contains one. Set of all strings containing exactly one occurrence of a string from the
language A.

Translation into FSA: This operator does not exist in FSA but can be constructed using previous
operators by �9E1)J� - [[A A] A [?*]]

� XFST syntax: E;�K)
Meaning: Contains at most one. Set of all strings containing at most one occurrence of a string from
the language A.

6

Translation into FSA: This operator does not exist in FSA but can be constructed using previous
operators by �L�9E1)J� � �L�)�):�MAN�9�;*I�O�&�P
��O�9�;*I� � �9E1):�L� . This is the union of the language that contains
exactly one A and the language that does not contain A at all.

� XFST syntax:)Q0
Meaning: Concatenation of the languages A and B. (a b is the concatenation of the two single-symbol
strings ”a” and ”b”. However, ab without a blank in between is a string of the single multi-character
symbol ”ab”.)

Translation into FSA: [A,B]

� XFST syntax:)�RTS
Meaning: n-ary concatenation of the language or relation A with itself. The set of strings or pairs of
strings obtained by concatenating A with itself n times. For example)�R�U is equivalent to [A A A].

Translation into FSA: This operator does not exist in FSA but can be constructed using prolog macro.
Basically, it is equal to concatenating A n times.

� XFST syntax:)�R! KSV2XWY%
Meaning: n to k concatenations of A. For example)NR! �U�2XZD% is equivalent to)NR�U�
1)�RT[\
1)�R�Z .
Translation into FSA: This operator does not exist in FSA but can be constructed using previous
operators by)�RTS]
!)�R � S^�Q_ �
 ...
!)�R�W

� XFST syntax:)�R � S
Meaning: More than n concatenations of A.

Translation into FSA: This operator does not exist in FSA but can be constructed using previous
operators by �)�RTSM�P�)-��� .

� XFST syntax:)�R-�`S
Meaning: Less than n concatenations of A.

Translation into FSA: This operator does not exist in FSA but can be constructed using previous
operators by ���P
1)NR1_a
1)NR�b5
DBcBcB=
H)NR � S � _ � .

� XFST syntax:),BedFB90
Meaning: Crossproduct of the regular languages A and B. It denotes a regular relation that maps every
string in A (upper side) to all strings in B (lower side), and vice versa.

Translation into FSA: A x B

� XFST syntax:),B9f�B90
Meaning: Composition of two regular relations A and B. The upper language of A gets directly related
to the lower language of B. The intersection of the lower language of A and the upper language of B
works like a filter without being present in the result of the composition. (e.g. [a:i
 b:j] .o. [i:x
 k:y]
gives the result [a:x] because of a:i and i:x. Everything else is filtered out by the intersection [i
 j] &
[i
 k] allowing only i on the (disappearing) intermediate level.)

Translation into FSA: A o B

7

� XFST syntax:
�) �

Meaning: Optionality (union of the language A with the empty language).

Translation into FSA: A R
� XFST syntax: ��gD�

Meaning: Symbol pair with a in the upper language and b in the lower language.

Translation into FSA: �5gD�
� XFST syntax: �)J�

Meaning: Same language as A. These brackets control the order in which operations are performed.

Translation into FSA: (A)

� XFST syntax: h�B9ijBCk
Meaning: Upper-side priority union. Union of all string pairs from the relation R with all those string
pairs from Q that have an upper string that is not in R. Alias: R .
 u. Q (Definition: R .
 u. Q = R
 [Q
.-u. R]).

Translation into FSA: This operator was not translated since its precedence comparing to the other
operators is not known. Moreover, it is rarely used.

� XFST syntax: h�B l@BCk
Meaning: Lower-side priority union. Union of all string pairs from the relation R with all those string
pairs from Q that have a lower string that is not in R. Alias: R .
 l. Q (Definition: R .
 l. Q = R
 [Q .-l.
R]).

Translation into FSA: This operator was not translated since its precedence comparing to the other
operators is not known. Moreover, it is rarely used.

� XFST syntax: h�B �nm BCk
Meaning: Upper-side minus. Set of all string pairs from the relation R minus those that have an upper
string that is also in Q. (Definition: R .-u. Q = [R.u - Q.u] .o. R).

Translation into FSA: This operator was not translated since its precedence comparing to the other
operators is not known. Moreover, it is rarely used.

� XFST syntax: h�B �]o BCk
Meaning: Lower-side minus. Set of all string pairs from the relation R minus those that have a lower
string that is also in Q. (Definition: R .-l. Q = R .o. [R.l - Q.l]).

Translation into FSA: This operator was not translated since its precedence comparing to the other
operators is not known. Moreover, it is rarely used.

� XFST syntax:)p�q0
Meaning: A before B. Set of strings where no substring from B can precede any substring from A.

Translation into FSA: This operator does not exist in FSA but can be constructed using previous
operators by <�E�� 0r)J� .

8

� XFST syntax:) � 0
Meaning: A after B. Set of strings where no substring from B can follow any substring from A.

Translation into FSA: This operator does not exist in FSA but can be constructed using previous
operators by <�E��)603�

� XFST syntax:)p� � 0
Meaning: Shuffle of A and B. (e.g. [a b � � x y] contains the strings axyb, axby, abxy, xayb, xaby
and xyab.)

Translation into FSA: This operator was not translated into FSA since its meaning is not clear. More-
over, it is rarely used.

� XFST syntax:),Bes
Meaning: Reverses the regular language A (e.g. [a b c].r equals c b a).

Translation into FSA: reverse(A)

� XFST syntax: � �c�):�t2vu�2wu o �
Meaning: Substitution of all symbols s (being a single symbol or a constituent of a symbol pair) in
the language or relation A by all symbols of the list sl. (e.g. ‘[[a b:0 b:x c], b, p q] gives [a [p:0
 q:0]
[p:x
 q:x] c].)

Translation into FSA: This operator was not translated into FSA.

� XFST syntax: h�B m or h�Bx_
Meaning: Denotes the upper language of the regular relation R. (e.g. [A .x. B].1 equals A)

Translation into FSA: domain(R)

� XFST syntax: h�B o or h�Byb
Meaning: Denotes the lower language of the regular relation R. (e.g. [A .x. B].2 equals B)

Translation into FSA: range(R)

� XFST syntax: h�Bez
Meaning: Inverts the regular relation R. (e.g. [A .x. B].i equals [B .x. A])

Translation into FSA: invert(R)

2.3 Restriction

Restriction rules were not translated into FSA since the documentation for their creating algorithms could
not be obtained, nor we succeeded to find them ourselves. Therefore, we only bring their XFST syntax and
meaning.

� XFST syntax:)7{ �q| h
Meaning: Restriction. Strings of language A are only allowed between a string of language L to the
left and a string of language R to the right.

9

� XFST syntax:)7{ �q|~} h } 2 |�� h � 2IBIBIB!2 |w� h �
Meaning:Restriction. Strings of language) are only allowed between a string of language |�} to the
left and a string of language h } to the right or between a string of |&� and a string of h � or or
between a string of |(� and a string of h � .

Notice that restriction rules are not simple for implementation as they might seem at first, since the left
and right context might have shared string instances with A, thus special care is required.

2.4 Replacement

Replace rules describe an operation that replaces some symbol or sequence of symbols by another sequence
or symbol. Thus, a replace rule results with a relation (and not a language). There is no construct in the
FSA Utils for replacement rules, thus, they had to be implemented using the simple operators defined above
(or by replace rules that have already been defined). Therefore, in all this section, instead of referring for
each operator to its “translation into FSA”, we refer to “construction”. The construction is done by using
XFST operators (as we did in previous cases were the operator was not defined directly in FSA). The XFST
replace rules are close relatives of the rewrite rules that were defined at Kaplan and Kay (1994), but they are
not identical to it, therefore, we can not rely on Kaplan and Kay (1994) implementation. The construction of
the XFST replace rules is based on the available documentation of their accurate implementation. Thus, the
following implementations are based on Karttunen (1997), Karttunen (1995), Karttunen and Kempe (1995)
and Karttunen (1996). The replace rules can be divided into four groups:

1. Unconditional replace rules (one rule with no context).

2. Unconditional parallel replace rules (several rules with no context that are performed at the same
time).

3. Conditional replace rules (one rule and one condition).

4. Conditional parallel replace rules (several rules and/or several contexts).

We deal with most of the rules from the first three groups but with none of the conditional parallel
replace rules. The reason for not implementing all of the replace operators is lack of documentation.

2.4.1 � � (obligatory, upper to lower replacement)

� XFST syntax:) � � 0
Meaning: Unconditional replacement of the language A by the language B. This denotes a relation
that consists of pairs of strings that are identical except that every instance of A in the upper-side
string corresponds to an instance of B in the lower-side string. For example, � � � � pairs “b” with
“b” (no change) and “aba” with “bbb” (replacing both “a”s by “b”s). The replacement always takes
place without considering the context.

Construction: [�NO A �)�BedFB.0,�a��* NO A] where NO A abbreviates <�E��-) � �j��� . This
construction defines a regular relation were each member of this relation contains any number (which
can be also zero) of iterations of �)�Bed@BP03� combined with strings that do not contain A which are
mapped to themselves. The strings not containing A (NO A) are defined by <�E��H) � ���L� and not by
<>E1) to deal with cases were A contains the empty string.

10

� XFST syntax:) } � � 0 } 2IBIBIB�24) � � � 0 �
Meaning: Unconditional parallel replacement of the language) } by the language 0 } and the language
) � by the language 0 � ... and the language) � by the language 0 � . This is like the relation) � � 0
except that there are S correspondences to consider simultaneously. For example, � � � ��2X� � � �
relates “abba” to “baab”.

Construction: �O�H��hQ�&*���� where N denotes the language of strings that do not contain any)!� :
��{,<�E��O�) }
�BcBcB=
1) � � � ���L�

and R stands for the relation that pairs every)O� with the corresponding 0P� :
h>{��O�) } BedFB90 } ��
�BcBcB=
��) � BedFB90 � �O�

.

� XFST syntax:) � � 0�
c
 | h
Meaning: Conditional replacement of the language A by the language B. This is like the relation
) � � 0 except that any instance of A in the upper string corresponds to an instance of B in the lower
string only when it is preceded by an instance of L and followed by an instance of R. Other instances
of A in the upper string remain unchanged. A, B, L, and R must all denote simple languages, not
relations. The slant of the double bars indicates whether the precede/follow constraints refer to the
instance of A in the upper string or to its image in the lower string. In the
c
 version, both contexts
refer to the upper string.

Construction: �
S@u��Ks1��0as;�D"IW&�I��u

B9f�B� f�S@u!��sH�DztS�0as;�D"IW&�K��u
B9f�B

| �!�=� � f1S(���IdY�
B9f�B

h-zt���&� � f1S(���IdL�
B9f�B

h+��l o ��"I�
B9f�B

h+�I�'f1���K0as;�D"IW&�I��u
Where:

– Let � and � be two symbols not in � . The escape character 	 is used since � and � are saved
symbols in XFST.

–
�
S@u1�IsH��0asH��"IW&�I��u^{��w�(��� � 	?�
@	 � � . InserBrackets eliminates from the upper side

language all context markers that appear on the lower side.

11

–
� f1S@u!��s;�DztS�0as;�D"IW&�I��u-{���<rE��9	�� 	 � �Y� . ConstrainBrackets denotes the language consist-
ing of strings that do not contain � � anywhere.

– | ���=� � f1S(���KdL�J{��L<��Y<���BcBcB |� ,¡-¢ ���£�¤BcBcB �@�V� <��@��BcBcB |w 3¡-¢ �¥<��£��BcBcB ����� . LeftContext
denotes the language in which any instance of � is immediately preceded by LEFT and every
LEFT is immediately followed by � , ignoring irrelevant brackets. ��BcBcB |� ,¡-¢ � denotes �v�F�+*| A��9	¦�
�	 � �=� � �9�:*6	§�~�M� , the language of all strings ending in | , ignoring all brackets
except for a final � . �£�>BcBcB � denotes �9	§��A;	 � �;*I� , the language of strings beginning with � ,
ignoring the other bracket.

– h-z����O� � f1S(���KdL��{���<¤�L��BcBcB � �¦<¤� h
��¨-© ¢ BcBcB �=�M�ª<��D<���BcBcB � �]� h

��¨-© ¢ BcBcB �=�L� . RightCon-
text denotes the language in which any instance of � is immediately followed by RIGHT and
any RIGHT is immediately preceded by � , ignoring irrelevant brackets. � h

��¨-© ¢ BcBcB � denotes
�L�Hh,A��9	��«
;	 � �¬�H*:� � �9	�®�H*I�L� , the language of all strings beginning with h , ignoring all
brackets except for an initial � . ��BcBcB � � denotes �9�v*�	 � A;	¯�j� , the language of strings ending
with � , ignoring the other bracket.

– The definition of Replace divides into three cases:

1. If A does not contain the empty string (epsilon) then

h+��l o ��"I��{/�9	��).A��9	��«
�	 � �^	 � � � 	¯� 0A��9	¯�°
;	 � �¬	 � �
This is the unconditional replacement of �`) � by �`0 � , ignoring irrelevant brackets.

2. If A is the empty string (i.e., A=epsilon) then

h+��l o ��"I��{/�9	 � 	¯� � � 	¯�?0±*�	 � �
3. If A contains the empty string but is not equal to it (i.e., contains other strings too) then
h+��l o �D"I�-{

	¯�).A��9	��«
�	 � �^	 � � � 	¯� 0A��9	��«
;	 � �¬	 �
2

	 � 	¯� � � 	¯�?0±*�	 �
That is, the first two cases are performed in parallel.

– h+�I�'f1���K0as;�D"IW&�I��u.{r��	¯�«
�	 � � � �H�&� . RemoveBrackets denotes the relation that maps
the strings of the upper language to the same strings without any context markers.

� XFST syntax:) � � 0/A;A | h
Meaning: Conditional replacement of the language A by the language B. This is like the relation
) � � 0�
c
 | h except that the // variant requires the left context on the lower side of the replace-
ment and the right context on the upper side.

Construction: �
S@u��Ks1��0as;�D"IW&�I��u

B9f�B� f�S@u!��sH�DztS�0as;�D"IW&�K��u
B9f�B

12

h-zt���&� � f1S(���IdL�
B9f�B

h+��l o ��"I�
B9f�B

| �!�=� � f1S(���IdY�
B9f�B

h+�I�'f1���K0as;�D"IW&�I��u
Where InsertBrackets, ConstrainBrackets, RightContext, Replace, LeftContext and RemoveBrackets
are the same as above.

� XFST syntax:) � � 0/8;8 | h
Meaning: Conditional replacement of the language A by the language B. This is like the relation
) � � 0
c
 | h except that the 8;8 variant requires the left context on the upper side of the
replacement and the right context on the lower side.

Construction: �
S@u��Ks1��0as;�D"IW&�I��u

B9f�B� f�S@u!��sH�DztS�0as;�D"IW&�K��u
B9f�B

| �!�=� � f1S(���IdY�
B9f�B

h+��l o ��"I�
B9f�B

h-zt���&� � f1S(���IdL�
B9f�B

h+�I�'f1���K0as;�D"IW&�I��u
Where InsertBrackets, ConstrainBrackets, RightContext, Replace, LeftContext and RemoveBrackets
are the same as above.

� XFST syntax:) � � 0/8;A | h
Meaning: Conditional replacement of the language A by the language B. This is like the relation
) � � 0�
c
 | h except that in the 8;A variant, both contexts refer to the lower string.

Construction: �
S@u��Ks1��0as;�D"IW&�I��u

B9f�B� f�S@u!��sH�DztS�0as;�D"IW&�K��u
B9f�B

13

h+��l o ��"I�
B9f�B

| �!�=� � f1S(���IdY�
B9f�B

h-zt���&� � f1S(���IdL�
B9f�B

h+�I�'f1���K0as;�D"IW&�I��u
Where InsertBrackets, ConstrainBrackets, RightContext, Replace, LeftContext and RemoveBrackets
are the same as above.

The rest of the obligatory upper to lower replace rules are conditional parallel replace rules, thus, as
mentioned they were not implemented. We only bring their syntax definition and meaning.

� XFST syntax:) }�} � � 0 }�} 2IBIBIB!24) }t� � � 0 }t�
c
 |j}�} h }�} 2IBIBIB�2 |j}t² h }t²
Meaning: Conditional parallel replacement. Every string of the language) }�} (upper side) is replaced
by all strings of the language 0 }�} (lower side; multiple results possible) and and every string
of) }t� is replaced by all strings of 0 }t� if and only if it occurs between a string of |L}�} to the left
and a string of h }�} to the right or or between a string of |Y}t² and a string of h }t² . All these
replacements take place simultaneously without interfering with each other. All replacements are
obligatory and upper-to-lower (since the replacement symbol is � �). In the
c
 variant both left and
right contexts are on the upper side.

� XFST syntax:) }�} � � 0 }�} 2IBIBIB!24) }t� � � 0 }t� A;A |j}�} h }�} 2IBIBIB�2 |j}t² h }t²
Meaning: Conditional parallel replacement. This is like the relation

) }�} � � 0 }�} 2IBIBIB!24) }t� � � 0 }t�
c
 |j}�} h }�} 2IBIBIB!2 |j}t² h }t²
except that the // variant requires the left contexts on the lower side of the replacement and the right
contexts on the upper side.

� XFST syntax:) }�} � � 0 }�} 2IBIBIB!24) }t� � � 0 }t� 8;8 |j}�} h }�} 2IBIBIB�2 |j}t² h }t²
Meaning: Conditional parallel replacement. This is like the relation

) }�} � � 0 }�} 2IBIBIB!24) }t� � � 0 }t�
c
 |j}�} h }�} 2IBIBIB!2 |j}t² h }t²
except that the 8;8 variant requires the left contexts on the upper side of the replacement and the right
contexts on the lower side.

� XFST syntax:) }�} � � 0 }�} 2IBIBIB!24) }t� � � 0 }t� 8;A |j}�} h }�} 2IBIBIB�2 |j}t² h }t²
Meaning: Conditional parallel replacement. This is like the relation

) }�} � � 0 }�} 2IBIBIB!24) }t� � � 0 }t�
c
 |j}�} h }�} 2IBIBIB!2 |j}t² h }t²
except that in the 8;A variant both left and right contexts are on the lower side.

14

� XFST syntax:
) }�} � � 0 }�} 2JBIBIB:2w) }t� � � 0 }t�
c
 |j}�} h }�} 2:BIBIBJ2 |j}t² h }t²
2I2
) �#} � � 0 �#} 2JBIBIB:2w) ��³ � � 0 ��³
c
 |w�#} h �#} 2:BIBIBJ2 |w��´ h ��´
2I2:BIBIB:2I2
)�µ } � � 0-µ } 2:BIBIB:2¶)�µT· � � 0-µ#·+
c
 | µ } h-µ } 2JBIBIBJ2 | µ�¸ h-µI¸
Meaning: Conditional parallel replacement. Every string of the language) }�} (upper side) is replaced
by all strings of the language 0 }�} (lower side; multiple results possible) and and every string of
) }t� is replaced by all strings of 0 }t� if and only if it occurs between a string of |L}�} to the left and a
string of h }�} to the right or or between a string of |Y}t² and a string of h }t² . At the same time,
every string of) �#} is replaced by all strings of language 0 �#} , etc., if it occurs between a string of |L�#}
and a string of h �#} , etc. All these replacements take place simultaneously without interfering with
each other. Note the double comma separating the groups of related replacements. A single comma is
used as the separator inside the replace and context lists. All replacements are obligatory and upper-
to-lower (since the replacement symbol is � �). In the
c
 variant both left and right contexts are on
the upper side.

� XFST syntax:
) }�} � � 0 }�} 2JBIBIB:2w) }t� � � 0 }t� A;A |j}�} h }�} 2:BIBIBJ2 |j}t² h }t²
2I2
) �#} � � 0 �#} 2JBIBIB:2w) ��³ � � 0 ��³ A;A |w�#} h �#} 2jBIBIB:2 |���´ h ��´
2I2:BIBIB:2I2
)�µ } � � 0-µ } 2:BIBIB:2¶)�µT· � � 0-µ#·JA;A | µ } h-µ } 2jBIBIB:2 | µ�¸ h-µI¸
Meaning: Conditional parallel replacement. This is like the above relation except that the // variant
requires the left contexts on the lower side of the replacement and the right contexts on the upper side.

� XFST syntax:
) }�} � � 0 }�} 2JBIBIB:2w) }t� � � 0 }t� 8;8 |j}�} h }�} 2:BIBIBJ2 |j}t² h }t²
2I2
) �#} � � 0 �#} 2JBIBIB:2w) ��³ � � 0 ��³ 8;8 |w�#} h �#} 2jBIBIB:2 |���´ h ��´
2I2:BIBIB:2I2
)�µ } � � 0-µ } 2:BIBIB:2¶)�µT· � � 0-µ#·J8;8 | µ } h-µ } 2jBIBIB:2 | µ�¸ h-µI¸
Meaning: Conditional parallel replacement. This is like the above relation except that the 8;8 variant
requires the left contexts on the upper side of the replacement and the right contexts on the lower side.

� XFST syntax:
) }�} � � 0 }�} 2JBIBIB:2w) }t� � � 0 }t� 8;A | }�} h }�} 2:BIBIBJ2 | }t² h }t²
2I2
) �#} � � 0 �#} 2JBIBIB:2w) ��³ � � 0 ��³ 8;A |w�#} h �#} 2jBIBIB:2 |���´ h ��´
2I2:BIBIB:2I2
)�µ } � � 0-µ } 2:BIBIB:2¶)�µT· � � 0-µ#·J8;A | µ } h-µ } 2jBIBIB:2 | µ�¸ h-µI¸
Meaning: Conditional parallel replacement. This is like the above relation except that in the 8;A variant
both the left contexts and the right contexts are on the lower side.

2.4.2
� � ��� (optional, upper to lower replacement)

The following operations are the same as in section 2.4.1, except that instead of � � appears
� � ��� . As� � represented an obligatory upper to lower replacement,

� � ��� represent an optional upper to lower

15

replacement, i.e., the meaning of the following operators is the same as with � � with the extra element of
optionality. For example, � � � � paired “b” with “b” (no change) and “aba” with “bbb” (replacing both “a”s
by “b”s), but � � � ��� � pairs “b” with “b” (no change) and “aba” with “bbb” (replacing both “a”s by “b”s),
“bba” (replacing only the first “a” with a “b”, leaving the second one unchanged), “abb” (replacing only the
second “a” with a “b”’, leaving the first one unchanged) and “aba” (leaving both of the “a”s unchanged).
Note that) � � ��� 0 is not equal to) � � � 0�
1)J� nor to �) � � 03��
H) .

� XFST syntax:) � � ��� 0
Construction: �&���P*]�)pBedFB�03�&��*-�H*j� . This construction defines a regular relation were each member
of this relation contains any number (which can be also zero) of iterations of �)pBedFB�0,� combined with
�;* that can contain) too.

� XFST syntax:) } � � ��� 0 } 2IBIBIB�24) � � � ��� 0 �
Construction: �O����*¬h®��*-�;*J� where R stands for the relation that pairs every);� with the correspond-
ing 0:� : h>{/�&�) } BedFB90 } �V
DBcBcB=
&�) � Bed@B90 � �&� .

� XFST syntax:) � � ��� 0¯
c
 | h
Construction: The same as the construction for) � � 0�
c
 | h except for the h+��l o ��"�� stage where
for each one of the three cases the obligatory upper to lower replace operator � � is replaced by the
optional upper to lower replace operator

� � ��� .
� XFST syntax:) � � ��� 0rA;A | h

Construction: The same as the construction for) � � 0¹A;A | h except for the h+��l o �D"I� stage
where for each one of the three cases the obligatory upper to lower replace operator � � is replaced
by the optional upper to lower replace operator

� � ��� .
� XFST syntax:) � � ��� 0r8;8 | h

Construction: The same as the construction for) � � 0¹8;8 | h except for the h+��l o �D"I� stage
where for each one of the three cases the obligatory upper to lower replace operator � � is replaced
by the optional upper to lower replace operator

� � ��� .
� XFST syntax:) � � ��� 0r8;A | h

Construction: The same as the construction for) � � 0¹8;A | h except for the h+��l o �D"I� stage
where for each one of the three cases the obligatory upper to lower replace operator � � is replaced
by the optional upper to lower replace operator

� � ��� .
The rest of the optional upper to lower replace rules are conditional parallel replace rules, thus, as

mentioned they were not implemented. We only bring their syntax definition. Their meaning was explained
in the beginning of this section.

� XFST syntax:) }�} � � ��� 0 }�} 2IBIBIB�24) }t� � � ��� 0 }t�
c
 |j}�} h }�} 2IBIBIB�2 |j}t² h }t²
� XFST syntax:) }�} � � ��� 0 }�} 2IBIBIB�24) }t� � � ��� 0 }t� A;A |j}�} h }�} 2IBIBIBK2 |j}t² h }t²
� XFST syntax:) }�} � � ��� 0 }�} 2IBIBIB�24) }t� � � ��� 0 }t� 8;8 |j}�} h }�} 2IBIBIBK2 |j}t² h }t²
� XFST syntax:) }�} � � ��� 0 }�} 2IBIBIB�24) }t� � � ��� 0 }t� 8;A |j}�} h }�} 2IBIBIBK2 |j}t² h }t²

16

� XFST syntax:
) }�} � � ��� 0 }�} 2JBIBIB�2¶) }t� � � ��� 0 }t�
c
 |j}�} h }�} 2JBIBIBJ2 |J}t² h }t²
2I2
) �#} � � ��� 0 �#} 2JBIBIB�2¶) ��³ � � ��� 0 ��³
c
 |w�#} h �#} 2JBIBIBJ2 |���´ h ��´
2I2:BIBIB:2I2
)�µ } � � ��� 0-µ } 2JBIBIBJ2w)�µ#· � � ��� 0�µ#·.
c
 | µ } h-µ } 2JBIBIBJ2 | µI¸ h-µI¸

� XFST syntax:
) }�} � � ��� 0 }�} 2JBIBIB�2¶) }t� � � ��� 0 }t� A;A |j}�} h }�} 2JBIBIBJ2 |J}t² h }t²
2I2
) �#} � � ��� 0 �#} 2JBIBIB�2¶) ��³ � � ��� 0 ��³ A;A |w�#} h �#} 2jBIBIB:2 |���´ h ��´
2I2:BIBIB:2I2
)�µ } � � ��� 0-µ } 2JBIBIBJ2w)�µ#· � � ��� 0�µ#·jA;A | µ } h-µ } 2jBIBIB:2 | µI¸ h�µI¸

� XFST syntax:
) }�} � � ��� 0 }�} 2JBIBIB�2¶) }t� � � ��� 0 }t� 8;8 |j}�} h }�} 2JBIBIBJ2 |J}t² h }t²
2I2
) �#} � � ��� 0 �#} 2JBIBIB�2¶) ��³ � � ��� 0 ��³ 8;8 |w�#} h �#} 2jBIBIB:2 |���´ h ��´
2I2:BIBIB:2I2
)�µ } � � ��� 0-µ } 2JBIBIBJ2w)�µ#· � � ��� 0�µ#·j8;8 | µ } h-µ } 2jBIBIB:2 | µI¸ h�µI¸

� XFST syntax:
) }�} � � ��� 0 }�} 2JBIBIB�2¶) }t� � � ��� 0 }t� 8;A |j}�} h }�} 2JBIBIBJ2 |J}t² h }t²
2I2
) �#} � � ��� 0 �#} 2JBIBIB�2¶) ��³ � � ��� 0 ��³ 8;A |w�#} h �#} 2jBIBIB:2 |���´ h ��´
2I2:BIBIB:2I2
)�µ } � � ��� 0-µ } 2JBIBIBJ2w)�µ#· � � ��� 0�µ#·j8;A | µ } h-µ } 2jBIBIB:2 | µI¸ h�µI¸

2.4.3 � � (obligatory, lower to upper replacement)

The following operations are the same as in section 2.4.1, except that instead of � � appears � � . As� � represented an obligatory upper to lower replacement, � � represent an obligatory lower to upper
replacement. Thus, the meaning of the � � replacement is that if a string of lower appears in the lower
language, it must be paired with a string of upper in the upper language. Notice that a string from upper can
be mapped either to itself or to a string from lower. For example, � � � � paired “b” with “b” (no change)
and “a” with “b” (replacing “a” by “b”), but �º� � � does not pair “b” with anything (since the pair b:b is
not legal) and pairs “a” with “a” and with “b”.

� XFST syntax:)p� � 0
Construction: � 0 � �):�tBez

� XFST syntax:) } � � 0 } 2IBIBIB�24) � � � 0 �
Construction: �;0 } � �) } 2IBIBIBK240 � � �) � �tBez

� XFST syntax:)p� � 0�
c
 | h
Construction: The same as the construction for) � � 0�
c
 | h except for the h+��l o ��"�� stage where
for each one of the three cases the obligatory upper to lower replace operator � � is replaced by the
obligatory lower to upper replace operator � � .

17

� XFST syntax:)p� � 0/A;A | h
Construction: The same as the construction for) � � 0¹A;A | h except for the h+��l o �D"I� stage
where for each one of the three cases the obligatory upper to lower replace operator � � is replaced
by the obligatory lower to upper replace operator � � .

� XFST syntax:)p� � 0/8;8 | h
Construction: The same as the construction for) � � 0¹8;8 | h except for the h+��l o �D"I� stage
where for each one of the three cases the obligatory upper to lower replace operator � � is replaced
by the obligatory lower to upper replace operator � � .

� XFST syntax:)p� � 0/8;A | h
Construction: The same as the construction for) � � 0¹8;A | h except for the h+��l o �D"I� stage
where for each one of the three cases the obligatory upper to lower replace operator � � is replaced
by the obligatory lower to upper replace operator � � .

The rest of the obligatory lower to upper replace rules are conditional parallel replace rules, thus, as
mentioned they were not implemented. We only bring their syntax definition. Their meaning was explained
in the beginning of this section.

� XFST syntax:) }�} � � 0 }�} 2IBIBIB!24) }t� � � 0 }t�
c
 |j}�} h }�} 2IBIBIB�2 |j}t² h }t²
� XFST syntax:) }�} � � 0 }�} 2IBIBIB!24) }t� � � 0 }t� A;A | }�} h }�} 2IBIBIB�2 | }t² h }t²
� XFST syntax:) }�} � � 0 }�} 2IBIBIB!24) }t� � � 0 }t� 8;8 |j}�} h }�} 2IBIBIB�2 |j}t² h }t²
� XFST syntax:) }�} � � 0 }�} 2IBIBIB!24) }t� � � 0 }t� 8;A |j}�} h }�} 2IBIBIB�2 |j}t² h }t²
� XFST syntax:
) }�} � � 0 }�} 2JBIBIB:2w) }t� � � 0 }t�
c
 |j}�} h }�} 2:BIBIBJ2 |j}t² h }t²
2I2
) �#} � � 0 �#} 2JBIBIB:2w) ��³ � � 0 ��³
c
 |w�#} h �#} 2:BIBIBJ2 |w��´ h ��´
2I2:BIBIB:2I2
)�µ } � � 0-µ } 2:BIBIB:2¶)�µT·-� � 0-µ#·+
c
 | µ } h-µ } 2JBIBIBJ2 | µ�¸ h-µI¸

� XFST syntax:
) }�} � � 0 }�} 2JBIBIB:2w) }t� � � 0 }t� A;A |j}�} h }�} 2:BIBIBJ2 |j}t² h }t²
2I2
) �#} � � 0 �#} 2JBIBIB:2w) ��³ � � 0 ��³ A;A |w�#} h �#} 2jBIBIB:2 |���´ h ��´
2I2:BIBIB:2I2
)�µ } � � 0-µ } 2:BIBIB:2¶)�µT·-� � 0-µ#·JA;A | µ } h-µ } 2jBIBIB:2 | µ�¸ h-µI¸

� XFST syntax:
) }�} � � 0 }�} 2JBIBIB:2w) }t� � � 0 }t� 8;8 |j}�} h }�} 2:BIBIBJ2 |j}t² h }t²
2I2
) �#} � � 0 �#} 2JBIBIB:2w) ��³ � � 0 ��³ 8;8 |w�#} h �#} 2jBIBIB:2 |���´ h ��´
2I2:BIBIB:2I2
)�µ } � � 0-µ } 2:BIBIB:2¶)�µT·-� � 0-µ#·J8;8 | µ } h-µ } 2jBIBIB:2 | µ�¸ h-µI¸

18

� XFST syntax:
) }�} � � 0 }�} 2JBIBIB:2w) }t� � � 0 }t� 8;A |j}�} h }�} 2:BIBIBJ2 |j}t² h }t²
2I2
) �#} � � 0 �#} 2JBIBIB:2w) ��³ � � 0 ��³ 8;A |w�#} h �#} 2jBIBIB:2 |���´ h ��´
2I2:BIBIB:2I2
)�µ } � � 0-µ } 2:BIBIB:2¶)�µT·-� � 0-µ#·J8;A | µ } h-µ } 2jBIBIB:2 | µ�¸ h-µI¸

2.4.4
� � � � (optional, lower to upper replacement)

The following operations are the same as in section 2.4.3, except that instead of � � appears
� � � � .

As � � represented an obligatory lower to upper replacement,
� � � � represents optional lower to upper

replacement. Thus, the meaning of the
� � � � replacement is the same as of � � replacement with the extra

element of optionality. For example, �¬� � � does not pair “b” with anything (since the pair b:b is not legal)
and pairs “a” with “a” and with “b”, but � � � � � � pairs “b” with “b” (the pair b:b is legal now since there is
optionality) and pairs “a” with “a” and with “b”.

� XFST syntax:) � � � � 0
Construction: � 0 � � ���):�tBez

� XFST syntax:) } � � � � 0 } 2IBIBIB�24) � � � � � 0 �
Construction: �;0 } � � ���) } 2IBIBIB!240 � � � ���) � �tBez

� XFST syntax:) � � � � 0¯
c
 | h
Construction: The same as the construction for) � � 0�
c
 | h except for the h+��l o ��"�� stage where
for each one of the three cases the obligatory upper to lower replace operator � � is replaced by the
optional lower to upper replace operator

� � � � .
� XFST syntax:) � � � � 0rA;A | h

Construction: The same as the construction for) � � 0¹A;A | h except for the h+��l o �D"I� stage
where for each one of the three cases the obligatory upper to lower replace operator � � is replaced
by the optional lower to upper replace operator

� � � � .
� XFST syntax:) � � � � 0r8;8 | h

Construction: The same as the construction for) � � 0¹8;8 | h except for the h+��l o �D"I� stage
where for each one of the three cases the obligatory upper to lower replace operator � � is replaced
by the optional lower to upper replace operator

� � � � .
� XFST syntax:) � � � � 0r8;A | h

Construction: The same as the construction for) � � 0¹8;A | h except for the h+��l o �D"I� stage
where for each one of the three cases the obligatory upper to lower replace operator � � is replaced
by the optional lower to upper replace operator

� � � � .
The rest of the optional lower to upper replace rules are conditional parallel replace rules, thus, as

mentioned they were not implemented. We only bring their syntax definition. Their meaning was explained
in the beginning of this section.

� XFST syntax:) }�} � � � � 0 }�} 2IBIBIB�24) }t� � � � � 0 }t�
c
 |j}�} h }�} 2IBIBIB�2 |j}t² h }t²
� XFST syntax:) }�} � � � � 0 }�} 2IBIBIB�24) }t� � � � � 0 }t� A;A |j}�} h }�} 2IBIBIBK2 |j}t² h }t²

19

� XFST syntax:) }�} � � � � 0 }�} 2IBIBIB�24) }t� � � � � 0 }t� 8;8 |j}�} h }�} 2IBIBIBK2 |j}t² h }t²
� XFST syntax:) }�} � � � � 0 }�} 2IBIBIB�24) }t� � � � � 0 }t� 8;A |j}�} h }�} 2IBIBIBK2 |j}t² h }t²
� XFST syntax:
) }�} � � � � 0 }�} 2JBIBIB�2¶) }t� � � � � 0 }t�
c
 |j}�} h }�} 2JBIBIBJ2 |J}t² h }t²
2I2
) �#} � � � � 0 �#} 2JBIBIB�2¶) ��³ � � � � 0 ��³
c
 |w�#} h �#} 2JBIBIBJ2 |���´ h ��´
2I2:BIBIB:2I2
)�µ } � � � � 0-µ } 2JBIBIBJ2w)�µ#· � � � � 0�µ#·.
c
 | µ } h-µ } 2JBIBIBJ2 | µI¸ h-µI¸

� XFST syntax:
) }�} � � � � 0 }�} 2JBIBIB�2¶) }t� � � � � 0 }t� A;A |j}�} h }�} 2JBIBIBJ2 |J}t² h }t²
2I2
) �#} � � � � 0 �#} 2JBIBIB�2¶) ��³ � � � � 0 ��³ A;A |w�#} h �#} 2jBIBIB:2 |���´ h ��´
2I2:BIBIB:2I2
)�µ } � � � � 0-µ } 2JBIBIBJ2w)�µ#· � � � � 0�µ#·jA;A | µ } h-µ } 2jBIBIB:2 | µI¸ h�µI¸

� XFST syntax:
) }�} � � � � 0 }�} 2JBIBIB�2¶) }t� � � � � 0 }t� 8;8 |j}�} h }�} 2JBIBIBJ2 |J}t² h }t²
2I2
) �#} � � � � 0 �#} 2JBIBIB�2¶) ��³ � � � � 0 ��³ 8;8 |w�#} h �#} 2jBIBIB:2 |���´ h ��´
2I2:BIBIB:2I2
)�µ } � � � � 0-µ } 2JBIBIBJ2w)�µ#· � � � � 0�µ#·j8;8 | µ } h-µ } 2jBIBIB:2 | µI¸ h�µI¸

� XFST syntax:
) }�} � � � � 0 }�} 2JBIBIB�2¶) }t� � � � � 0 }t� 8;A |j}�} h }�} 2JBIBIBJ2 |J}t² h }t²
2I2
) �#} � � � � 0 �#} 2JBIBIB�2¶) ��³ � � � � 0 ��³ 8;A |w�#} h �#} 2jBIBIB:2 |���´ h ��´
2I2:BIBIB:2I2
)�µ } � � � � 0-µ } 2JBIBIBJ2w)�µ#· � � � � 0�µ#·j8;A | µ } h-µ } 2jBIBIB:2 | µI¸ h�µI¸

2.4.5 � � � (obligatory, upper to lower, lower to upper replacement)

The following operations are the same as in section 2.4.1, except that instead of � � appears � � � . As� � represented an obligatory upper to lower replacement, � � � represents an obligatory upper to lower
and lower to upper replacement. Thus, the meaning of the � � � replacement is that if a string of upper
appears in the upper language, it must be paired with a string of lower in the lower language and if a string
of lower appears in the lower language, it must be paired with a string of upper in the upper language. In
the � � � replacement the replacement is done in both ways (� � and � �). For example, � � � � paired
“b” with “b” (no change) and “a” with “b” (replacing “a” by “b”), �\� � � paired “b” with nothing and “a”
with “a” and “b”, but �»� � � � does not pair “b” with anything (since the pair b:b is not legal) and pairs
“a” only with “b”.

� XFST syntax:)p� � � 0
Construction: Let � be a character not in � . We use the escape character 	 to precede � , since � is
a reserved character in XFST. Thus,)r� � � 0 is defined as

<�E��9	���

20

B9f�B
) � � 	�

B9f�B
	��°� � 0

B9f�B
<�E��9	���

� XFST syntax:) } � � � 0 } 2IBIBIB�24) � � � � 0 �
Construction: Let ��_H2IBIBIB!2T�-S be characters not in � . We use the escape character 	 to precede each
�-z , since � is a reserved character in XFST. Thus,)p� � � 0 is defined as

<>E��9	��_3
vBIBIB-
�	��SM�
B9f�B

) } � � 	���_-2JBIBIBJ2w) � � � 	��S
B9f�B

	�N_7� � 0 } 2JBIBIBJ2v	���S¼� � 0 �
B9f�B

<>E��9	��_3
vBIBIB-
�	��SM�
The rest of the obligatory upper to lower and lower to upper replace rules are conditional replace rules

and they were not implemented. We only bring their syntax definition. Their meaning was explained in the
beginning of this section.

� XFST syntax:)p� � � 0�
c
 | h
� XFST syntax:)p� � � 0�A;A | h
� XFST syntax:)p� � � 0�8;8 | h
� XFST syntax:)p� � � 0�8;A | h
� XFST syntax:) }�} � � � 0 }�} 2IBIBIBK24) }t� � � � 0 }t�
c
 |J}�} h }�} 2IBIBIB!2 |J}t² h }t²
� XFST syntax:) }�} � � � 0 }�} 2IBIBIBK24) }t� � � � 0 }t� A;A | }�} h }�} 2IBIBIB!2 | }t² h }t²
� XFST syntax:) }�} � � � 0 }�} 2IBIBIBK24) }t� � � � 0 }t� 8;8 |J}�} h }�} 2IBIBIB!2 |J}t² h }t²
� XFST syntax:) }�} � � � 0 }�} 2IBIBIBK24) }t� � � � 0 }t� 8;A | }�} h }�} 2IBIBIB!2 | }t² h }t²
� XFST syntax:
) }�} � � � 0 }�} 2:BIBIBJ2w) }t� � � � 0 }t�
c
 | }�} h }�} 2JBIBIBJ2 | }t² h }t²
2I2
) �#} � � � 0 �#} 2:BIBIBJ2w) ��³ � � � 0 ��³
c
 |��#} h �#} 2jBIBIB:2 |w��´ h ��´
2I2:BIBIB:2I2
)�µ } � � � 0-µ } 2jBIBIB:2¶)�µ#·�� � � 0-µT·+
c
 | µ } h�µ } 2jBIBIB�2 | µI¸ h-µ�¸

21

� XFST syntax:
) }�} � � � 0 }�} 2:BIBIBJ2w) }t� � � � 0 }t� A;A |J}�} h }�} 2jBIBIB:2 |j}t² h }t²
2I2
) �#} � � � 0 �#} 2:BIBIBJ2w) ��³ � � � 0 ��³ A;A |��#} h �#} 2JBIBIBJ2 |w��´ h ��´
2I2:BIBIB:2I2
)�µ } � � � 0-µ } 2jBIBIB:2¶)�µ#·�� � � 0-µT·JA;A | µ } h-µ } 2JBIBIB:2 | µI¸ h-µ�¸

� XFST syntax:
) }�} � � � 0 }�} 2:BIBIBJ2w) }t� � � � 0 }t� 8;8 |J}�} h }�} 2jBIBIB:2 |j}t² h }t²
2I2
) �#} � � � 0 �#} 2:BIBIBJ2w) ��³ � � � 0 ��³ 8;8 |��#} h �#} 2JBIBIBJ2 |w��´ h ��´
2I2:BIBIB:2I2
)�µ } � � � 0-µ } 2jBIBIB:2¶)�µ#·�� � � 0-µT·J8;8 | µ } h-µ } 2JBIBIB:2 | µI¸ h-µ�¸

� XFST syntax:
) }�} � � � 0 }�} 2:BIBIBJ2w) }t� � � � 0 }t� 8;A |J}�} h }�} 2jBIBIB:2 |j}t² h }t²
2I2
) �#} � � � 0 �#} 2:BIBIBJ2w) ��³ � � � 0 ��³ 8;A |��#} h �#} 2JBIBIBJ2 |w��´ h ��´
2I2:BIBIB:2I2
)�µ } � � � 0-µ } 2jBIBIB:2¶)�µ#·�� � � 0-µT·J8;A | µ } h-µ } 2JBIBIB:2 | µI¸ h-µ�¸

2.4.6
� � � ��� (optional, upper to lower, lower to upper replacement)

The following operations are the same as in section 2.4.5, except that instead of � � � appears
� � � ��� .

As � � � represented an obligatory upper to lower and lower to upper replacement,
� � � ��� represents

an optional upper to lower and lower to upper replacement. Thus, the meaning of the
� � � ��� replacement

is the same as of � � � with the extra element of optionality. For example �½� � � � does not pair “b”
with anything (since the pair b:b is not legal) and pairs “a” only with “b”, but � � � � ��� � pairs “b” with “b”
and “a” with “a” and with “b”.

� XFST syntax:) � � � ��� 0
Construction: Let � be a character not in � . We use the escape character 	 to precede � , since � is
a reserved character in XFST. Thus,) � � � ��� 0 is defined as

<�E��9	���
B9f�B

) � � ��� 	�
B9f�B

	� � � � � 0
B9f�B

<�E��9	���
The rest of the optional upper to lower and lower to upper replace rules are conditional and parallel

replace rules and they were not implemented. We only bring their syntax definition. Their meaning was
explained in the beginning of this section.

22

� XFST syntax:) } � � � ��� 0 } 2IBIBIB�24) � � � � ��� 0 �
� XFST syntax:) � � � ��� 0�
c
 | h
� XFST syntax:) � � � ��� 0/A;A | h
� XFST syntax:) � � � ��� 0/8;8 | h
� XFST syntax:) � � � ��� 0/8;A | h
� XFST syntax:) }�} � � � ��� 0 }�} 2IBIBIB!24) }t� � � � ��� 0 }t�
c
 |J}�} h }�} 2IBIBIB!2 |J}t² h }t²
� XFST syntax:) }�} � � � ��� 0 }�} 2IBIBIB!24) }t� � � � ��� 0 }t� A;A | }�} h }�} 2IBIBIBK2 | }t² h }t²
� XFST syntax:) }�} � � � ��� 0 }�} 2IBIBIB!24) }t� � � � ��� 0 }t� 8;8 |J}�} h }�} 2IBIBIBK2 |J}t² h }t²
� XFST syntax:) }�} � � � ��� 0 }�} 2IBIBIB!24) }t� � � � ��� 0 }t� 8;A |J}�} h }�} 2IBIBIBK2 |J}t² h }t²
� XFST syntax:
) }�} � � � ��� 0 }�} 2:BIBIB:2¶) }t� � � � ��� 0 }t�
c
 |J}�} h }�} 2jBIBIB:2 |j}t² h }t²
2I2
) �#} � � � ��� 0 �#} 2:BIBIB:2¶) ��³ � � � ��� 0 ��³
c
 |��#} h �#} 2JBIBIBJ2 |w��´ h ��´
2I2:BIBIB:2I2
)�µ } � � � ��� 0-µ } 2JBIBIBJ2w)�µ#· � � � ��� 0-µ#·-
c
 | µ } h-µ } 2JBIBIB:2 | µI¸ h-µ�¸

� XFST syntax:
) }�} � � � ��� 0 }�} 2:BIBIB:2¶) }t� � � � ��� 0 }t� A;A |J}�} h }�} 2JBIBIBJ2 |j}t² h }t²
2I2
) �#} � � � ��� 0 �#} 2:BIBIB:2¶) ��³ � � � ��� 0 ��³ A;A |��#} h �#} 2jBIBIB�2 |w��´ h ��´
2I2:BIBIB:2I2
)�µ } � � � ��� 0-µ } 2JBIBIBJ2w)�µ#· � � � ��� 0-µ#·~A;A | µ } h-µ } 2jBIBIB�2 | µI¸ h-µ�¸

� XFST syntax:
) }�} � � � ��� 0 }�} 2:BIBIB:2¶) }t� � � � ��� 0 }t� 8;8 |J}�} h }�} 2JBIBIBJ2 |j}t² h }t²
2I2
) �#} � � � ��� 0 �#} 2:BIBIB:2¶) ��³ � � � ��� 0 ��³ 8;8 |��#} h �#} 2jBIBIB�2 |w��´ h ��´
2I2:BIBIB:2I2
)�µ } � � � ��� 0-µ } 2JBIBIBJ2w)�µ#· � � � ��� 0-µ#·~8;8 | µ } h-µ } 2jBIBIB�2 | µI¸ h-µ�¸

� XFST syntax:
) }�} � � � ��� 0 }�} 2:BIBIB:2¶) }t� � � � ��� 0 }t� 8;A |J}�} h }�} 2JBIBIBJ2 |j}t² h }t²
2I2
) �#} � � � ��� 0 �#} 2:BIBIB:2¶) ��³ � � � ��� 0 ��³ 8;A |��#} h �#} 2jBIBIB�2 |w��´ h ��´
2I2:BIBIB:2I2
)�µ } � � � ��� 0-µ } 2JBIBIBJ2w)�µ#· � � � ��� 0-µ#·~8;A | µ } h-µ } 2jBIBIB�2 | µI¸ h-µ�¸

2.4.7 � � � (obligatory, upper to lower, left to right, longest match replacement)

The following operations are the same as in section 2.4.1, except that instead of � � appears � � � . As� � represented an obligatory upper to lower replacement, � � � represents an obligatory upper to lower
left to right longest match replacement. Instances of the language A on the upper side of the relation are
replaced selectively. The selection factors each upper language string uniquely into A and non-A substrings.

23

The factoring is based on a left-to-right and longest match regimen. The starting locations are selected from
left-to-right. If there are overlapping instances of A starting at the same location, only the longest one is
replaced by all strings of B. For example, �,� � � � pairs “aaa” with “bbb”, “bb” and “b”, but �&� � � �
pairs “aaa” only with “b”.

� XFST syntax:)-� � � 0
Construction: �

S(zt��z�� o�¾ ����"I�
B9f�B

| �!�=� ¢ fHh-z����O�
B9f�B

| f�SM���!u!� ¾ ����"I�
B9f�B

h+��l o �D"I�I�G�KS(�
Where:

– Let R�2K�.2 � be characters not in � . We use the escape character 	 to precede them since they
are reserved characters in XFST.

–
�
S(z¿��z¿� o�¾ �D��"��¬{

<>E���	'R.
�	¯�¥
;	 � �
B9f�B

��BOB � � � 	'R.
c
)
where ��B.B � � � |vÀ3Á± h�
c
 |w 3¡-¢ h

��¨-© ¢ is a version of empty string replacement
that allows only one application between any LEFT and RIGHT. The construction for ��BYB � � �|~À,Á± h¤
c
 |w ,¡.¢ h

��¨-© ¢ is the same as for Â�i,i h � �Ã|vÀ,Á± h¤
c
 |w ,¡.¢ h
��¨-© ¢

except that h+��l o �D"I�-{/�9	 � 	�� � � 	�� |vÀ3Á> h�	 � � .
– | ���=� ¢ f1h-zt���&�w{

��<�E��9	GRX���9	'R�g�	�� Â�i+i h � �NgD	 � �L��*6<�E��9	'RX�
B9f�B

	'R � � ���
where Â�i,i h � {��H)-A��9	'RX� � �9�j*�	'RX�O�

– | f1SM����uK� ¾ ����"I�^{�<>E���	¯�Ä��Â-i+i h � � �±E��9	 � �&�O� where

Â�i+i h � � {Å)-A��9	��«
�	 � � � ���~*6��	¯�«
;	 � �O�
– h+��l o ��"I�I�G�KS(�¶{Ä	¯�®<�E��9	 � �M	 � � � 0

The rest of the obligatory upper to lower left to right longest match replace rules are conditional and
parallel replace rules and they were not implemented. We only bring their syntax definition. Their meaning
was explained in the beginning of this section.

24

� XFST syntax:) } � � � 0 } 2IBIBIB!24) � � � � 0 �
� XFST syntax:)-� � � 0�
c
 | h
� XFST syntax:)-� � � 0�A;A | h
� XFST syntax:)-� � � 0�8;8 | h
� XFST syntax:)-� � � 0�8;A | h
� XFST syntax:) }�} � � � 0 }�} 2IBIBIB�24) }t� � � � 0 }t�
c
 |j}�} h }�} 2IBIBIB!2 |j}t² h }t²
� XFST syntax:) }�} � � � 0 }�} 2IBIBIB�24) }t� � � � 0 }t� A;A | }�} h }�} 2IBIBIB!2 | }t² h }t²
� XFST syntax:) }�} � � � 0 }�} 2IBIBIB�24) }t� � � � 0 }t� 8;8 |j}�} h }�} 2IBIBIB!2 |j}t² h }t²
� XFST syntax:) }�} � � � 0 }�} 2IBIBIB�24) }t� � � � 0 }t� 8;A |j}�} h }�} 2IBIBIB!2 |j}t² h }t²
� XFST syntax:
) }�} � � � 0 }�} 2jBIBIB�2w) }t� � � � 0 }t�
c
 |j}�} h }�} 2JBIBIBJ2 |J}t² h }t²
2I2
) �#} � � � 0 �#} 2jBIBIB�2w) ��³ � � � 0 ��³
c
 |w�#} h �#} 2jBIBIB:2 |���´ h ��´
2I2:BIBIB:2I2
)�µ } � � � 0-µ } 2JBIBIBJ2w)�µ#·I� � � 0�µ#·+
c
 | µ } h-µ } 2jBIBIB:2 | µI¸ h�µI¸

� XFST syntax:
) }�} � � � 0 }�} 2jBIBIB�2w) }t� � � � 0 }t� A;A |j}�} h }�} 2jBIBIB:2 |J}t² h }t²
2I2
) �#} � � � 0 �#} 2jBIBIB�2w) ��³ � � � 0 ��³ A;A |��#} h �#} 2JBIBIBJ2 |���´ h ��´
2I2:BIBIB:2I2
)�µ } � � � 0-µ } 2JBIBIBJ2w)�µ#·I� � � 0�µ#·JA;A | µ } h�µ } 2JBIBIBJ2 | µI¸ h�µI¸

� XFST syntax:
) }�} � � � 0 }�} 2jBIBIB�2w) }t� � � � 0 }t� 8;8 |j}�} h }�} 2jBIBIB:2 |J}t² h }t²
2I2
) �#} � � � 0 �#} 2jBIBIB�2w) ��³ � � � 0 ��³ 8;8 |��#} h �#} 2JBIBIBJ2 |���´ h ��´
2I2:BIBIB:2I2
)�µ } � � � 0-µ } 2JBIBIBJ2w)�µ#·I� � � 0�µ#·J8;8 | µ } h�µ } 2JBIBIBJ2 | µI¸ h�µI¸

� XFST syntax:
) }�} � � � 0 }�} 2jBIBIB�2w) }t� � � � 0 }t� 8;A |j}�} h }�} 2jBIBIB:2 |J}t² h }t²
2I2
) �#} � � � 0 �#} 2jBIBIB�2w) ��³ � � � 0 ��³ 8;A |��#} h �#} 2JBIBIBJ2 |���´ h ��´
2I2:BIBIB:2I2
)�µ } � � � 0-µ } 2JBIBIBJ2w)�µ#·I� � � 0�µ#·J8;A | µ } h�µ } 2JBIBIBJ2 | µI¸ h�µI¸

2.4.8 � � (obligatory, upper to lower, left to right, shortest match replacement)

The following operations are the same as in section 2.4.7, except that instead of � � � appears � � . As
� � � represented an obligatory upper to lower left to right longest match replacement, � � represents
an obligatory upper to lower left to right shortest match replacement, i.e., the only difference is that the
replacement is done on shortest match basis instead of longest match basis. For example, �J��� � � � pairs

25

“aaa” with “b”, but �,�Q� � � pairs “aaa” with “bbb”. These rules were not implemented. We only bring
their XFST syntax.

� XFST syntax:)-� � 0
� XFST syntax:) } � � 0 } 2IBIBIB�24) � � � 0 �
� XFST syntax:)-� � 0�
c
 | h
� XFST syntax:)-� � 0/A;A | h
� XFST syntax:)-� � 0/8;8 | h
� XFST syntax:)-� � 0/8;A | h
� XFST syntax:) }�} � � 0 }�} 2IBIBIB!24) }t� � � 0 }t�
c
 | }�} h }�} 2IBIBIB�2 | }t² h }t²
� XFST syntax:) }�} � � 0 }�} 2IBIBIB!24) }t� � � 0 }t� A;A |j}�} h }�} 2IBIBIB�2 |j}t² h }t²
� XFST syntax:) }�} � � 0 }�} 2IBIBIB!24) }t� � � 0 }t� 8;8 | }�} h }�} 2IBIBIB�2 | }t² h }t²
� XFST syntax:) }�} � � 0 }�} 2IBIBIB!24) }t� � � 0 }t� 8;A |j}�} h }�} 2IBIBIB�2 |j}t² h }t²
� XFST syntax:
) }�} � � 0 }�} 2JBIBIB:2w) }t� � � 0 }t�
c
 |j}�} h }�} 2:BIBIBJ2 |j}t² h }t²
2I2
) �#} � � 0 �#} 2JBIBIB:2w) ��³ � � 0 ��³
c
 |w�#} h �#} 2:BIBIBJ2 |w��´ h ��´
2I2:BIBIB:2I2
)�µ } � � 0-µ } 2:BIBIB:2¶)�µT·K� � 0-µ#·+
c
 | µ } h-µ } 2JBIBIBJ2 | µ�¸ h-µI¸

� XFST syntax:
) }�} � � 0 }�} 2JBIBIB:2w) }t� � � 0 }t� A;A | }�} h }�} 2:BIBIBJ2 | }t² h }t²
2I2
) �#} � � 0 �#} 2JBIBIB:2w) ��³ � � 0 ��³ A;A |w�#} h �#} 2jBIBIB:2 |���´ h ��´
2I2:BIBIB:2I2
)�µ } � � 0-µ } 2:BIBIB:2¶)�µT·K� � 0-µ#·JA;A | µ } h-µ } 2jBIBIB:2 | µ�¸ h-µI¸

� XFST syntax:
) }�} � � 0 }�} 2JBIBIB:2w) }t� � � 0 }t� 8;8 |j}�} h }�} 2:BIBIBJ2 |j}t² h }t²
2I2
) �#} � � 0 �#} 2JBIBIB:2w) ��³ � � 0 ��³ 8;8 |w�#} h �#} 2jBIBIB:2 |���´ h ��´
2I2:BIBIB:2I2
)�µ } � � 0-µ } 2:BIBIB:2¶)�µT·K� � 0-µ#·J8;8 | µ } h-µ } 2jBIBIB:2 | µ�¸ h-µI¸

� XFST syntax:
) }�} � � 0 }�} 2JBIBIB:2w) }t� � � 0 }t� 8;A | }�} h }�} 2:BIBIBJ2 | }t² h }t²
2I2
) �#} � � 0 �#} 2JBIBIB:2w) ��³ � � 0 ��³ 8;A | �#} h �#} 2jBIBIB:2 | ��´ h ��´
2I2:BIBIB:2I2
)�µ } � � 0-µ } 2:BIBIB:2¶)�µT·K� � 0-µ#·J8;A | µ } h-µ } 2jBIBIB:2 | µ�¸ h-µI¸

26

2.4.9 � � � (obligatory, upper to lower, right to left, longest match replacement)

The following operations are the same as in section 2.4.7, except that instead of � � � appears � � � . As
� � � represented an obligatory upper to lower left to right longest match replacement, � � � represents
an obligatory upper to lower right to left longest match replacement, i.e., the only difference is that the
replacement is done from right to left instead of from left to right. For example, �=� ���X��
L�e�:���=� � � " pairs
“aba” with “ac” and “ca”, �@� �\�X�j
��e�.���F�Æ� � � " pairs “aba” only with “ca”’, but �@� �\�X�j
��e�-���@� � � �-"
pairs “aba” only with “ac”. These rules were not implemented. We only bring their XFST syntax.

� XFST syntax:) � � �-0
� XFST syntax:) } � � �-0 } 2IBIBIB!24) � � � �-0 �
� XFST syntax:) � � �-0�
c
 | h
� XFST syntax:) � � �-0�A;A | h
� XFST syntax:) � � �-0�8;8 | h
� XFST syntax:) � � �-0�8;A | h
� XFST syntax:) }�} � � �-0 }�} 2IBIBIB�24) }t� � � �.0 }t�
c
 |j}�} h }�} 2IBIBIB!2 |j}t² h }t²
� XFST syntax:) }�} � � �-0 }�} 2IBIBIB�24) }t� � � �.0 }t� A;A |j}�} h }�} 2IBIBIB!2 |j}t² h }t²
� XFST syntax:) }�} � � �-0 }�} 2IBIBIB�24) }t� � � �.0 }t� 8;8 |j}�} h }�} 2IBIBIB!2 |j}t² h }t²
� XFST syntax:) }�} � � �-0 }�} 2IBIBIB�24) }t� � � �.0 }t� 8;A |j}�} h }�} 2IBIBIB!2 |j}t² h }t²
� XFST syntax:
) }�} � � �.0 }�} 2jBIBIB�2w) }t� � � �.0 }t�
c
 | }�} h }�} 2JBIBIBJ2 | }t² h }t²
2I2
) �#} � � �.0 �#} 2jBIBIB�2w) ��³ � � �-0 ��³
c
 | �#} h �#} 2jBIBIB:2 | ��´ h ��´
2I2:BIBIB:2I2
)�µ } � � �-0-µ } 2JBIBIBJ2w)�µ#· � � �-0-µT·.
c
 | µ } h-µ } 2jBIBIB:2 | µI¸ h�µI¸

� XFST syntax:
) }�} � � �.0 }�} 2jBIBIB�2w) }t� � � �.0 }t� A;A |j}�} h }�} 2jBIBIB:2 |J}t² h }t²
2I2
) �#} � � �.0 �#} 2jBIBIB�2w) ��³ � � �-0 ��³ A;A | �#} h �#} 2JBIBIBJ2 | ��´ h ��´
2I2:BIBIB:2I2
)�µ } � � �-0-µ } 2JBIBIBJ2w)�µ#· � � �-0-µT·jA;A | µ } h�µ } 2JBIBIBJ2 | µI¸ h�µI¸

� XFST syntax:
) }�} � � �.0 }�} 2jBIBIB�2w) }t� � � �.0 }t� 8;8 |j}�} h }�} 2jBIBIB:2 |J}t² h }t²
2I2
) �#} � � �.0 �#} 2jBIBIB�2w) ��³ � � �-0 ��³ 8;8 | �#} h �#} 2JBIBIBJ2 | ��´ h ��´
2I2:BIBIB:2I2
)�µ } � � �-0-µ } 2JBIBIBJ2w)�µ#· � � �-0-µT·j8;8 | µ } h�µ } 2JBIBIBJ2 | µI¸ h�µI¸

� XFST syntax:
) }�} � � �.0 }�} 2jBIBIB�2w) }t� � � �.0 }t� 8;A |j}�} h }�} 2jBIBIB:2 |J}t² h }t²
2I2

27

) �#} � � �.0 �#} 2jBIBIB�2w) ��³ � � �-0 ��³ 8;A |��#} h �#} 2JBIBIBJ2 |���´ h ��´
2I2:BIBIB:2I2
)�µ } � � �-0-µ } 2JBIBIBJ2w)�µ#· � � �-0-µT·j8;A | µ } h�µ } 2JBIBIBJ2 | µI¸ h�µI¸

2.4.10 � � right (obligatory, upper to lower, right to left, shortest match replacement)

The following operations are the same as in section 2.4.7, except that instead of � � � appears � � . As
� � � represented an obligatory upper to lower left to right longest match replacement, � � represents an
obligatory upper to lower right to left shortest match replacement, i.e., the difference is that the replacement
is done from right to left on shortest match basis instead of from left to right on longest match basis. These
rules were not implemented. We only bring their XFST syntax.

� XFST syntax:) � �.0
� XFST syntax:) }:� �.0 } 2IBIBIB�24) �^� �-0 �
� XFST syntax:) � �.0�
c
 | h
� XFST syntax:) � �.0/A;A | h
� XFST syntax:) � �.0/8;8 | h
� XFST syntax:) � �.0/8;A | h
� XFST syntax:) }�}:� �.0 }�} 2IBIBIB!24) }t�¬� �-0 }t�
c
 |j}�} h }�} 2IBIBIB�2 |j}t² h }t²
� XFST syntax:) }�}:� �.0 }�} 2IBIBIB!24) }t�¬� �-0 }t� A;A |j}�} h }�} 2IBIBIB�2 |j}t² h }t²
� XFST syntax:) }�} � �.0 }�} 2IBIBIB!24) }t� � �-0 }t� 8;8 | }�} h }�} 2IBIBIB�2 | }t² h }t²
� XFST syntax:) }�}:� �.0 }�} 2IBIBIB!24) }t�¬� �-0 }t� 8;A |j}�} h }�} 2IBIBIB�2 |j}t² h }t²
� XFST syntax:
) }�}:� �-0 }�} 2JBIBIB:2w) }t�^� �-0 }t�
c
 |j}�} h }�} 2:BIBIBJ2 |j}t² h }t²
2I2
) �#}:� �-0 �#} 2JBIBIB:2w) ��³N� �-0 ��³
c
 |w�#} h �#} 2:BIBIBJ2 |w��´ h ��´
2I2:BIBIB:2I2
)�µ } � �-0-µ } 2:BIBIB:2¶)�µT· � �-0-µ#·+
c
 | µ } h-µ } 2JBIBIBJ2 | µ�¸ h-µI¸

� XFST syntax:
) }�} � �-0 }�} 2JBIBIB:2w) }t� � �-0 }t� A;A | }�} h }�} 2:BIBIBJ2 | }t² h }t²
2I2
) �#}:� �-0 �#} 2JBIBIB:2w) ��³N� �-0 ��³ A;A |w�#} h �#} 2jBIBIB:2 |���´ h ��´
2I2:BIBIB:2I2
)�µ } � �-0-µ } 2:BIBIB:2¶)�µT· � �-0-µ#·JA;A | µ } h-µ } 2jBIBIB:2 | µ�¸ h-µI¸

� XFST syntax:
) }�}:� �-0 }�} 2JBIBIB:2w) }t�^� �-0 }t� 8;8 |j}�} h }�} 2:BIBIBJ2 |j}t² h }t²
2I2
) �#}:� �-0 �#} 2JBIBIB:2w) ��³N� �-0 ��³ 8;8 |w�#} h �#} 2jBIBIB:2 |���´ h ��´
2I2:BIBIB:2I2
)�µ } � �-0-µ } 2:BIBIB:2¶)�µT· � �-0-µ#·J8;8 | µ } h-µ } 2jBIBIB:2 | µ�¸ h-µI¸

28

� XFST syntax:
) }�}:� �-0 }�} 2JBIBIB:2w) }t�^� �-0 }t� 8;A |j}�} h }�} 2:BIBIBJ2 |j}t² h }t²
2I2
) �#}:� �-0 �#} 2JBIBIB:2w) ��³N� �-0 ��³ 8;A |w�#} h �#} 2jBIBIB:2 |���´ h ��´
2I2:BIBIB:2I2
)�µ } � �-0-µ } 2:BIBIB:2¶)�µT· � �-0-µ#·J8;A | µ } h-µ } 2jBIBIB:2 | µ�¸ h-µI¸

2.5 Markup

Markup rules take an input string and mark it by inserting some strings before and after it. There is no
construct in the FSA Utils for markup rules, thus, they had to be implemented using the operators that have
already been defined. Therefore, in all this section, instead of referring for each operator to its “translation
into FSA”, we refer to “construction”. The construction is done by using XFST operators (as we did in
previous cases were the operator was not defined directly in FSA). The construction of the XFST markup
rules is based on the available documentation of their accurate implementation. Thus, the following imple-
mentations are based on Karttunen (1996).

� XFST syntax:) � �Ç| BIBIBXh
Meaning: Markup. Instances of the language A on the upper side of the relation are selected for
markup. Each selected A string is marked by inserting all strings of L to its left and all strings of R to
its right. The selected A strings themselves remain unchanged, along with the non-A segments.

Construction:) � �?|)Qh
� XFST syntax:)-� � �`| BIBIBXh

Meaning: Directed markup. Instances of the language A on the upper side of the relation are selected
for markup under left-to-right, longest match regimen. Thus, The starting locations are selected from
left-to-right. If there are overlapping instances of A starting at the same location, only the longest one
is replaced by all strings of B. Each selected A string is marked by inserting all strings of R to its left
and all strings of S to its right. The selected A strings themselves remain unchanged, along with the
non-A segments.

Construction: �
S(zt��z�� o�¾ ����"I�

B9f�B
| �!�=� ¢ fHh-z����O�

B9f�B
| f�SM���!u!� ¾ ����"I�

B9f�B�
S@u!s1��z¿f1S

Where:

– Let R�2K�.2 � be characters not in � . We use the escape character 	 to precede them since they
are reserved characters in XFST.

29

–
�
S(z¿��z¿� o�¾ �D��"��¬{

<>E���	'R.
�	¯�¥
;	 � �
B9f�B

��BOB � � � 	'R.
c
)
where ��B.B � � � |vÀ3Á± h�
c
 |w 3¡-¢ h

��¨-© ¢ is a version of empty string replacement
that allows only one application between any LEFT and RIGHT. The construction for ��BYB � � �|~À,Á± h¤
c
 |w ,¡.¢ h

��¨-© ¢ is the same as for Â�i,i h � �Ã|vÀ,Á± h¤
c
 |w ,¡.¢ h
��¨-© ¢

except that h+��l o �D"I�-{/�9	 � 	�� � � 	�� |vÀ3Á> h�	 � � .
– | ���=� ¢ f1h-zt���&�w{

��<�E��9	GRX���9	'R�g�	�� Â�i+i h � �NgD	 � �L��*6<�E��9	'RX�
B9f�B

	'R � � ���
where Â�i,i h��O{��H)-A��9	'RX� � �9�j*�	'RX�O�

– | f1SM����uK� ¾ ����"I�^{�<>E���	¯�Ä��Â-i+i h � � �±E��9	 � �&�O� where

Â�i+i h � � {Å)-A��9	��«
�	 � � � ���~*6��	¯�«
;	 � �O�
–
�
S@u!sH��z�f�SG{�	�� � �?| 2v	 � � � h

The rest of the markup rules were not implemented since we could not obtain any documentation of the
creating algorithms. We bring only their XFST syntax and meaning.

� XFST syntax:)-� �Ç| BIBIBXh
Meaning: Directed markup. Instances of the language A on the upper side of the relation are selected
for markup under left-to-right, shortest match regimen. Thus, The starting locations are selected from
left-to-right. If there are overlapping instances of A starting at the same location, only the shortest
one is replaced by all strings of B. Each selected A string is marked by inserting all strings of R to its
left and all strings of S to its right. The selected A strings themselves remain unchanged, along with
the non-A segments.

� XFST syntax:) � � � | BIBIBXh
Meaning: Directed markup. Instances of the language A on the upper side of the relation are selected
for markup under right-to-left, longest match regimen. Thus, The starting locations are selected from
right-to-left. If there are overlapping instances of A starting at the same location, only the longest one
is replaced by all strings of B. Each selected A string is marked by inserting all strings of R to its left
and all strings of S to its right. The selected A strings themselves remain unchanged, along with the
non-A segments.

� XFST syntax:) � � | BIBIBXh
Meaning: Directed markup. Instances of the language A on the upper side of the relation are selected
for markup under right-to-left, shortest match regimen. Thus, The starting locations are selected from
right-to-left. If there are overlapping instances of A starting at the same location, only the shortest
one is replaced by all strings of B. Each selected A string is marked by inserting all strings of R to its
left and all strings of S to its right. The selected A strings themselves remain unchanged, along with
the non-A segments.

30

2.6 Boundary symbol for restriction and replacement

In the restriction, { � , and conditional replacement, � � 2 � � ��� 2K� � 2 � � � � 2K� � � 2 � � � ��� 2T� � �
2T� � 2 � � �a2 � � expressions we can use a special boundary marker, BCÈ^B , to refer to the beginning or
to the end of a string. In the left context, the boundary marker signals the beginning of the string; in the
right context it means the end of the string. For example, the restriction expression ��{ � BCÈ^B denotes the
language where “a” appears only at the end of a string.

The boundary marker is not allowed as a constituent in a symbol pair; otherwise it can be used in a
regular expression like any other symbol. For example, in the replacement expression � � � � �.
c
&��BCÈ¬B=
1��� �
the union in the left context indicates that “a” is to be replaced by “b” at the beginning of a string and after
another “a”.

Construction: We do not deal with all the cases where the boundary symbol BCÈ^B can be used. We only
deal with boundary cases contexts that are in one of the following forms (| ���=� � f�S(���IdY� and h-z����O� � f1S(���KdL�
are assumed not to contain BCÈ^B):
� BCÈ¬B | ���=� � f�S(���IdY� h-z����&� � f1S(���IdY�
� ��BCÈ¬B | ���=� � f�S(���IdY�¿� h-z����O� � f�S(���IdY�
� ��BCÈ¬B � | ���=� � f�S(���IdY� h-z����O� � f�S(���IdY�
� �c��BCÈ¬B � | ���=� � f1S(���KdL��� h-z����O� � f�S(���IdY�
� | �!�=� � f1S(���IdL� h-zt���&� � f1S(���IdL�vBCÈ^B
� | �!�=� � f1S(���IdL� � h-zt���&� � f1S(���IdL�vBCÈ^B �
� | �!�=� � f1S(���IdL� h-zt���&� � f1S(���IdL�j��BCÈ^B �
� | �!�=� � f1S(���IdL� � h-zt���&� � f1S(���IdL�j��BCÈ^B �c�
� BCÈ¬B | ���=� � f�S(���IdY� h-z����&� � f1S(���IdY�vBCÈ¬B
� ��BCÈ¬B | ���=� � f�S(���IdY�¿� h-z����O� � f�S(���IdY��BCÈ¬B
� ��BCÈ¬B � | ���=� � f�S(���IdY� h-z����O� � f�S(���IdY��BCÈ¬B
� �c��BCÈ¬B � | ���=� � f1S(���KdL��� h-z����O� � f�S(���IdY�~BCÈ^B
� BCÈ¬B | ���=� � f�S(���IdY� � h-z����&� � f1S(���IdY�vBCÈ¬B �
� ��BCÈ¬B | ���=� � f�S(���IdY�¿� � h-z����O� � f�S(���IdY��BCÈ¬B �
� ��BCÈ¬B � | ���=� � f�S(���IdY� � h-z����O� � f�S(���IdY��BCÈ¬B �
� �c��BCÈ¬B � | ���=� � f1S(���KdL��� � h-z����O� � f�S(���IdY�~BCÈ^B �
� BCÈ¬B | ���=� � f�S(���IdY� h-z����&� � f1S(���IdY�j��BCÈ¬B �
� ��BCÈ¬B | ���=� � f�S(���IdY�¿� h-z����O� � f�S(���IdY�~��BCÈ¬B �
� ��BCÈ¬B � | ���=� � f�S(���IdY� h-z����O� � f�S(���IdY�~��BCÈ¬B �
� �c��BCÈ¬B � | ���=� � f1S(���KdL��� h-z����O� � f�S(���IdY�J��BCÈ^B �

31

� BCÈ¬B | ���=� � f�S(���IdY� � h-z����&� � f1S(���IdY�j��BCÈ¬B �c�
� ��BCÈ¬B | ���=� � f�S(���IdY�¿� � h-z����O� � f�S(���IdY�~��BCÈ¬B �c�
� ��BCÈ¬B � | ���=� � f�S(���IdY� � h-z����O� � f�S(���IdY�~��BCÈ¬B �c�
� �c��BCÈ¬B � | ���=� � f1S(���KdL��� � h-z����O� � f�S(���IdY�J��BCÈ^B �c�
As we do not deal with restriction rules we need to deal with boundary cases only in replace rules. The

replace rules were constructed from six stages: InsertBrackets, ConstrainBrackets, LeftContext, RightCon-
text, Replace and RemoveBrackets. In boundary cases where the left context is in the beginning of a string,
only the LeftContext stage is changed. The LeftContext stage was defined as

| ���=� � f�S(���IdY�P{/��<���</��BcBcB |w 3¡-¢ �n�£�7BcBcB �O�=�Ä<��&��BcBcB |w ,¡.¢ ��</�£�>BcBcB �O�&�
where ��BcBcB |w ,¡.¢ � denoted

�L���~* | A��9	��«
;	 � �&� � �9�j*�	¯�~�L�
and �£��BcBcB � denoted

�9	¯�QA;	 � �;*I�
The definition of LeftContext is not changed but the definition of ��BcBcB |� ,¡-¢ � is changed into

�O� | A��9	��«
;	 � �L� � �9�~*q	¯�~�O�
In boundary cases where the right context is at the end of a string, only the RightContext stage is changed.
The RightContext stage was defined as

h-z����&� � f1S(���IdY�V{/��<��O��BcBcB � �¯<�� h
��¨-© ¢ BcBcB �O�=�«</��</��BcBcB � �»� h

��¨-© ¢ BcBcB �L�&�
where � h

��¨-© ¢ BcBcB � denoted
�O�Hh,A��9	��¥
;	 � �\�H*j� � �9	¯�®�;*I�O�

and ��BcBcB � � denoted
�9�j*�	 � A;	��~�

The definition of RightContext is not changed but the definition of � h
��¨-© ¢ BcBcB � is changed into

�O�Hh,A��9	��«
�	 � �&� � �9	¯�®�;*I�O�
In boundary cases where both the right context and the left context are at the end and in the beginning of
a string respectively, both the RightContext and the LeftContext stages are changed as described above.
The idea behind these changes is that the context part of replacement expression can be actually seen as
��* |� ,¡-¢ h

��¨.© ¢ �;* and by simply eliminating one of the �;* in one of the ends we can relate to a
boundary case. The definitions that was changed above did exactly that - eliminated the appropriate �;* for
each case. More complicated cases, as for example � � � �^
c
P��BCÈ¬B¶
Y��� should be dealt by conditional
parallel replacement. For example, � � � �.
c
&��BCÈ^B=
H��� , should be interpreted as

� � � �+
c
���BCÈ^B � 2I2w� � � �.
c
&� ���
Since we do not deal with conditional parallel replacement, we can not deal with these cases.

32

2.7 Order of Precedence

The following list states the order of precedence of all above operators in XFST. Operators of same prece-
dence are executed from left to right, except the prefix operators

� < 8§E�E;��EDB � that are executed from
right to left. To enforce another order use angle brackets []. The list begins with the operators of highest
precedence, i.e. with the most tightly binding ones. Operators of same precedence are on the same line.

g
< 8�E>E;�QEDB
� *�RQBx_7BybrB m B o BezÉBes
A
concatenation� �

.� �
{ � � � � � ��� � � � � � � � � � � � � ��� � � � � � � � � � �
Bed@B�B9fDB

The order of precedence in FSA is different of the order of precedence in XFST. To avoid of unexpected
results while translating regular expressions from XFST into FSA we use the () brackets that control the
precedence order in FSA (as [] does that in XFST). During the translation, each operation is rounded with
() brackets to enforce the right order.

2.8 Advanced XFST techniques

In the XFST toolbox exist some other techniques that were not mentioned, such as Compile-Replace and
Flag-Diacritics. Since these methods are not “regular expressions” in the simple sense but more of an
advanced methods and moreover, they are compile time techniques, they are beyond the scope of this paper
and we do not relate to them.

33

3 Results and their analysis

3.1 Theoretical aspect

As a preliminary step for implementing a compiler from XFST to FSA we needed to do two things: the
first was to construct a grammar for XFST, and the second was to express each XFST operation using the
FSA syntax. Since XFST is propriety, both of the things were not fully available and a lot of theoretical
work had to be done in order to achieve them. The grammar we constructed is almost full, and seems to
capture almost any XFST syntax. The second part, concerning the XFST operations translations was more
problematic. Most of the basic operators exist also in the FSA Utils or could be constructed with not much
of an effort. The problem arises when reaching to the more complicated operators - restriction, replacement
and markup. These operations does not exist in FSA at all, thus, we needed to construct them from the basic
operators. Most of these constructions, as we discovered, are not trivial at all and require some complicated
stages. The problem we tackled was that there was only little available documentation about the algorithms
for constructing these operations. For some of the operations without an existing available documentation,
we succeeded in finding the construction algorithms, but there were still a lot of operations for which we
did not find the construction algorithm. Moreover, we found that for some of the known algorithms - they
were not fully accurate and did not deal with all the cases, but we were able to find the misaccuracies and
fix them and to find the way to deal with the cases that were not dealt with. Furthermore, the main discovery
was that the published algorithms gave different results than the XFST gave. The meaning of this is that in
some cases given a regular expression, building the matching network using XFST or using the construction
algorithms results with two different networks, yet equivalent in the relation they define, i.e., for each input
string the two groups of outputs in the two networks are equivalent, but some outputs are produced in more
paths in the direct implementation network than in the XFST network. Since when referring to a group there
is no meaning to the number of times a member in the group occurs, we can say that the two groups of
outputs were equal in the two networks. The main occurrence of this was in the conditional replace rules
(i.e., replace rules with context) where for each replace path that the XFST gave, a direct implementation
using the construction algorithm resulted with two paths. Specifically, in the network created by direct im-
plementation of the construction algorithm, instead of getting only a path that contains in some stage the pair
upper:lower we get two paths, one with upper:lower and one with the concatenation of two pairs: upper:0
and 0:lower (0 represent the empty string in XFST). For example, consider the replace rule � � � �.
c
H" $.
Inserting this rule directly into xfst results with the following network:

Sigma: ? a b c d
Size: 5
Net: 31B6F8
Flags: deterministic, pruned, minimized, epsilon free
Arity: 2
fs0: ? � � fs0, a � � fs0, b � � fs0, c � � fs1, d � � fs0.
fs1: ? � � fs0, a � � fs2, b � � fs0, c � � fs1, d � � fs0, � a:b � � � s3.
fs2: ? � � fs0, a � � fs0, b � � fs0, c � � fs1.
s3: d � � fs0.

Compiling the rule to a network using the published algorithm results with the following network:

Sigma: ? a b c d � �
Size: 7
Net: 31B438

34

Flags: deterministic, pruned, minimized, epsilon free
Arity: 2
fs0: ? � � fs0, a � � fs0, b � � fs0, c � � fs1, d � � fs0.
fs1: ? � � fs0, a � � fs2, b � � fs0, c � � fs1, d � � fs0, � a:b � � � s3,
� a:0 � � � s4.
fs2: ? � � fs0, a � � fs0, b � � fs0, c � � fs1.
s3: d � � fs0.
s4: � 0:b � � � s3.

Careful inspection of this two networks results with the conclusion that they describe the same relation
but they do not equal. In the first network there is only one stage where the replace a:b occurs as in the
second network there are two stages where the replace occurs - one by a:b and the second by a:0 at first and
0:b afterwards. The same happens in all of the conditional replace rules. Thus, it is clear that the XFST
toolbox uses somewhat different construction algorithms than we obtained. We feel that this is an important
insight regarding the XFST toolbox and replace rules in general. It shows that the problem is more difficult
than it sometimes seems and regarded to be.

3.2 Practical results - comparison between XFST and FSA

After having the compiler, an interesting thing to do was to take some XFST code, compile it into an
equivalent FSA code and compare the two resulting networks. The networks that we got were not the same
in cases of replace rules from the reasons mentioned in section 3.1 but behaved the same in the sense that
for each input string they produced the same group of outputs. We could not perform a comparison of the
networks to inspect their equality since they are not equal. What we could do was to inspect the way they
are displayed. XFST and FSA display the resulted network in different ways, using different notations. The
XFST network uses two kinds of arc symbols notations: a symbol used in the regular expression and ?,
denoting unknown symbol (a symbol that did not appear anywhere in the regular expression). The FSA
network uses three kinds of arc symbols notations: a symbol used in the regular expression, ?, denoting
any symbol (including those that appear elsewhere in the network) and ’symbol denoting anything that is
not symbol. Thus, equivalent networks in XFST and FSA (and also networks denoting the same language
but not equivalent) have different representation. It seems that the XFST representation is more compact
and more convenient for the user in terms of simplicity of understanding what is the language or relation it
describes. In the implementation of markup and replace rules when using symbols assumed not to be in � ,
the symbols do not effect the behavior of the resulting network on an input string. The XFST representation
has the advantage of not showing these symbols on the arcs in the resulting network. However, the resulting
network in the FSA Utils has these symbols on its arcs since it uses the notation of ’symbol. Thus, the
resulting network is less understandable and seems more cumbersome. This is a clear advantage of the
XFST toolbox.

4 Possible enhancements and future work

As we mentioned, not all XFST operations were implemented in FSA. Thus, further research can be done
in this direction to find the construction of other XFST operators that were not constructed here. Such
a research requires an high level understanding of finite state techniques and operations and can lead to
further insight of the XFST toolbox.

35

5 Installer’s Guide

System requirements:

� Linux

� Perl v5.8 or above

� FSA

Perl and FSA are not mandatory. Perl is required only if your input file is not in the right form (further
explanation can be found in the user’s guide - section 6). FSA is required only if you want to run your
output file on the FSA Utils.

How to install the program?

No installation process is needed. All you need to do is to unzip the package, there you will find xfst2fsa.exe
which is the only file you need in order to run the program. If you want to run preprocessing on your input
file (as will be explained in the user’s guide - section 6) you need also correct syntax.perl.

And if I want to build it myself?

Further explanation on how to build it yourself or make changes in the code files can be found in the
programmer’s guide - section 7)

36

6 User’s Guide

The program gets as input an XFST file and returns an FSA macros file. In order to use the program you
need to know:

1. The structure of the input file

2. How to run the program

3. The structure of the output file

4. How to run the output file on FSA

6.1 The structure of the input file

The structure of the input file that the program excepts is more limited than the structure that XFST excepts.
The extra restrictions are usually caused from the FSA Utils restrictions. The structure of the input file for
this program should be as follows:

� The XFST commands that can be used are: define, ! (remark), clear stack, minimize, echo, read regex
and regex.

� Each XFST command should begin in a different line except for a remark (!).

� The read regex (or regex) can be used only once and if used it must be at the end of the file and that
line must end with 8 n (enter).

� In section 2 all XFST operators were presented. All those operators can be used except for the fol-
lowing:

– h�B9ijBCk (upper side priority union)

– h�B l@BCk (lower side priority union)

– h�B9ijBCk (upper side priority union)

– h�B �nm BCk (upper side minus)

– h�B �]o BCk (lower side minus)

–)r� � 0 (shuffle)

– � �c�):�t2�u�2wu o �
– The boundary symbol BCÈ^B can be used only in one of the forms described in section 2.6.

– Operators that were not translated into FSA and are not in this list can be used, but will not be
translated into FSA, thus, there is no guaranty to the way the FSA output file will behave in the
FSA Utils if using them.

� The input file can contain empty lines everywhere.

� When using the define command, the definition name should be a sequence of letters and numbers,
containing at least one letter.

� The characters �2�%�2T8 and A can not be used as symbols or as a part of multicharacters symbols.

37

� The following multicharacter symbols are reserved to the program usage. Using them can cause
unexpected results. These are: �+�+� , �,�+� , R;R;R or any multicharacter symbol beginning with either
one of the strings regex, lower, upper, stage, n mac, n2 mac, r mac or r2 mac.

In practice the structure of the input file is even more restricted, and includes in addition to the above
restrictions also the following ones:

� Remarks (!) can appear in separate lines only.

� Each command must begin in the beginning of the line (with no tabs and spaces before).

� When using a define command, only one space (and not tab) should separate between the command
define and the definition name.

� The definitions names must not begin with capitals letters (since FSA is built over Prolog, there are
some Prolog restriction in FSA).

� The character R can not be used as a symbol or as a part of a multicharacter symbol.

� The file must end with a read regex or regex command (with 8 n at the end as explained above).

If your file does not violate any of these extra requirements you will not need to run the perl script. If
your file does violate some of this extra requirements, you do not need to correct your file, just run the perl
script (as will be explained later) before running the program. This script will create a corrected file for you.

6.2 How to run the program

1. If you need to run the perl script (see explanation in section 6.1) run the command:
% perl correct syntax.perl input file output file
where input file is your input file with the xfst code. output file is the file into which the corrected
code will be written.

2. Run the program by using the command:
% ./xfst2fsa.exe correct input file output file.pl
where correct input file is your input file if you did not perform step 1 above or the output file you
got from running step 1 above. Notice that the output file must have the .pl extension. This is from
reasons of applicability to FSA. output file.pl contains the equivalent FSA code.

6.3 The structure of the output file

This section is not necessary for running the output file on the FSA Utils, but if you want to learn a little bit
about its structure, you want to read it.

After running the program you get a file containing the equivalent FSA code. If you will look at the
output file you will be able to recognize the input file code, but you will find a completely different syntax
which is FSA syntax combined with prolog (the FSA Utils is built over prolog). Some of the main changes
are listed:

� Each remark is translated into an equivalent prolog remark (the character ! is replaced by %%).

� Each one of the XFST commands clear stack, minimize or echo appears in a prolog remark (since
they are not relevant for the FSA code).

38

� Each definition (the XFST command define) in the XFST input file has a macro (may be using other
macros) defining it. The definition name is prefixed with ’xxx’ in all the places it occures.

� The read regex or regex XFST command is translated into a macro with the name regex.

6.4 How to run the output file on FSA

Now that you have an equivalent FSA code file, you probably want to run it on the FSA Utils. So, here is
how you should do it (this instructions are taken out of the FSA manual, were you can find them yourself):

1. You will need the output file the program generated and the file macros.pl in the package you unzipped.
The file macros.pl contains macros that the program uses for the XFST to FSA translation.

2. Open the FSA Utils. If you want to use FSA interactively with the graphical interface, use the com-
mand
% fsa -tk

3. You need to let the fsa know that you want it to recognize the code in the files macros.pl and the
program output file. You do that by using the -aux[file] command line option, or the AuxFile button
of the TK Widget.

4. Now you can use in the command line or at the regex box (in the graphical interface) any of the
definitions you had in your XFST file (just remember to prefix it with ’xxx’). The read regex command
can be used by referring to ’regex’.

6.5 Example files

The package contains some input file for example. This files are tes1.txt, test2.txt and input.xfst. The file
input.xfst contains examples for all the XFST operations. You do not need to run it under the perl script, you
can directly run it threw the program. The files test1.txt and test2.txt contains XFST code which is a part of
a computational system for morphological tagging of the Qur’an. You need to run them first under the perl
script. Running them threw the program will yield some parse error of the program. The reason is that this
files contain some operators that are not supported by our program. You can still run the output files on the
FSA Utils, but of obvious reasons the results are not correct. You can use these two files to inspect the effect
of running the perl script over a file and for inspecting how the program handles parse error occurrences.

39

7 programmer’s guide

This section gives further explanation on the different files constructing the program for programmers who
wish to understand the implementations and perhaps introduce some changes in it and for users who wish
to build the program their self.

The program was written using the ansi C programming language and using Flex and Bison. A perl
script was written for the preprocessing stage of the input file.

The package contains all the program source files:

� xfst2fsa.l - Flex file. Responsible for reading the tokens from the input file.

� xfst2fsa.y - Bison file. Contains the XFST grammar and responsible for parsing the input file using
the tokens read by the flex file into a parsing tree.

� xfst2fsa.c - ansi C code file. This is the main program. It calls yyparse() to create the input parsing
tree and by walking over the tree generates the appropriate FSA code into the output file given by the
user.

� typedef.h - a C header file. This files contains all the definition and functions prototypes.

� correct syntax.perl - a perl file. This perl script is responsible for the preprocessing stage of the
input file in cases that the XFST code is not in the same form required by the program (as explained
in section 6.1).

� macros.pl - a prolog file combined with FSA syntax. This file contain macros that are used by the
output FSA code file. Most of the macros in this file are for the replace and markup rules. As shown
in section 2 the construction of the replace and markup operations requires some stages and is not
trivial. Thus, we wrote macros for this operations to make a clearer FSA code file. Moreover, this file
can be used in the FSA Utils for using replace and markup rules that are not implemented in FSA.

� input.xfst, test1.txt, test2.txt - example input files. An explanation about them was already given in
section 6.5.

How can I build the program myself?
The program can be built by running the series of following commands:
% flex xfst2fsa.l
This command run flex on the file xfst2fsa.l and creates the file lex.yy.c .
% bison -d xfst2fsa.y
This command runs bison of the file xfst2fsa.y and creates the files xfst2fsa.tab.c and xfst2fsa.tab.h .
% gcc -Wall -ansi -pedantic -c lex.yy.c
This command compiles the file lex.yy.c and creates the file lex.yy.o .
% gcc -Wall -ansi -pedantic -c xfst2fsa.tab.c
This command compiles the file xfst2fsa.tab.c and creates the file xfst2fsa.tab.o .
% gcc -Wall -ansi -pedantic -c xfst2fsa.c
This command compiles the file xfst2fsa.c and creates the file xfst2fsa.o .
% gcc xfst2fsa.o xfst2fsa.tab.o lex.yy.o -o xfst2fsa.exe
This command links together the files xfst2fsa.o, xfst2fsa.tab.o and lex.yy.o and creates the executable file
xfst2fsa.exe (of course it can be named by a different name). Now that you have the file xfst2fsa.exe, you
can run the program as explained in section 6.2.

40

8 Acknowledgements

This program was done as a part of the Laboratory in natural languages processing – Computer science
department, University of Haifa - winter semester 2002-2003 under the instruction of Dr. Shuly Wintner.
We thank Shlomo Yona for writing the Perl script for this project.

41

References

Beesley, Kenneth R. and Lauri Karttunen. Forthcoming. Finite-State Morphology: Xerox Tools and Tech-
niques.

Gerdemann, Dale and Gertjan van Noord. 1999. Transducers from rewrite rules with backreferences. In
Ninth Conference of the European Chapter of the Association for Computational Linguistics, pages
126–133, Bergen Norway.

Kaplan, Ronald M. and Martin Kay. 1994. Regular models of phonological rule systems. Computational
Linguistics, 20(3):331–378, September.

Karttunen, Lauri. 1995. The replace operator. In Proceedings of the 33rd Annual Meeting of the Association
for Computational Linguistics, pages 16–24.

Karttunen, Lauri. 1996. Directed replacement. In Proceedings of ACL’96, pages 108–115.

Karttunen, Lauri. 1997. The replace operator. In Emmanuel Roche and Yves Schabes, editors, Finite-State
Language Processing, Language, Speech and Communication. MIT Press, Cambridge, MA, chapter 4,
pages 117–147.

Karttunen, Lauri and Andre Kempe. 1995. The parallel replacement operation in finite state calculus.
Technical Report 1995-021, Rank Xerox research centre – Grenoble laboratory.

van Noord, Gertjan, 2000. FSA6 Reference Manual.

42

