
Semantic Parsing Using Content and Context:
A Case Study from Requirements Elicitation

Reut Tsarfaty
Weizmann Institute

Rehovot, Israel

Eli Pogrebetzky
Interdisciplinary Center

Herzliya, Israel

Guy Weiss
Weizmann Institute

Rehovot, Israel

Yaarit Natan
Weizmann Institute

Rehovot, Israel

Smadar Szekely
Weizmann Institute

Rehovot, Israel

David Harel
Weizmann Institute

Rehovot, Israel

Abstract

We present a model for automatic se-
mantic analysis of requirements elicitation
documents. Our target semantic repre-
sentation employs live sequence charts, a
multi-modal visual language for scenario-
based programming, which has a direct
translation into executable code. The ar-
chitecture we propose integrates sentence-
level and discourse-level processing in a
generative probabilistic framework for the
analysis and disambiguation of individ-
ual sentences in context. We empiri-
cally show that the discourse-based model
consistently outperforms a sentence-based
model on constructing a system that re-
flects all the static (entities, properties) and
dynamic (behavioral scenarios) require-
ments in the document.

1 Introduction

Requirements elicitation is a process whereby a
system analyst gathers information from a stake-
holder about a desired software to be imple-
mented. The knowledge collected by the analyst
may be static, referring to the conceptual model
(the entities, their properties, the possible val-
ues) or dynamic, referring to the behavior that the
system should follow (who does what to whom,
when, how, etc). A stakeholder interested in the
software typically has a specific (static and dy-
namic) domain in mind, but he or she cannot nec-
essarily prescribe any formal models or code ar-
tifacts. The term requirements elicitation we use
here refers to a piece of discourse in natural lan-
guage by means of which a stakeholder communi-
cates their desiderata to the system analyst.

The role of a system analyst is to understand
the different requirements and transform them into
formal constructs (formal diagrams or executable

code). Moreover, the analyst needs to consol-
idate the different pieces of information to un-
cover a single shared domain. Studies in soft-
ware engineering aim to develop intuitive sym-
bolic systems with which human agents can en-
code requirements that would then be unambigu-
ously translated into a formal model (Fuchs and
Schwitter, 1995; Bryant and Lee, 2002). More re-
cently, Gordon and Harel (2009) defined a natural
fragment of English that can be used for specify-
ing requirements, which can be effectively parsed
and interpreted using a chart parser. However,
the grammar that underlies this fragment is highly
ambiguous and all disambiguation needed is con-
ducted by a human agent by hand. In general, it is
repeatedly shown that the more natural the formal
system is, the harder it is to develop an unambigu-
ous translation mechanism (Kuhn, 2014).

In this paper we accept the ambiguity of re-
quirements descriptions as a premise, and aim
to answer the following question: can we auto-
matically recover a formal representation of the
complete system, which best reflects the human-
perceived interpretation of the entire document?
Recent advances in natural language processing,
with an eye to semantic parsing (Zettlemoyer and
Collins, 2005; Liang et al., 2011; Artzi and Zettle-
moyer, 2013; Liang and Potts, 2014), use differ-
ent formalisms and various kinds of signals for se-
mantic parsing. In particular, the model of Lei et
al. (2013) induces input parsers from format de-
scriptions. However, rarely do these models take
into account an entire document’s context.

The key idea we promote here is that discourse
context provides substantial disambiguating infor-
mation for sentences’ analysis. We suggest a novel
model for integrated sentence-level and discourse-
level processing in a joint generative probabilistic
model, from which we can recover a representa-
tion of the specified system. Our input is given
in the simplified, yet highly ambiguous, fragment

Figure 1: An LSC scenario: ”When the user clicks
the button, the display color must change to red.”

of English of Gordon and Harel (2009). The
output, in contrast, is an unambiguous and well-
formed sequence of formal constructs that repre-
sent the dynamic behavior of the system, called
live sequence charts (LSC) (Damm and Harel,
2001; Harel and Marelly, 2003), tied to a single
shared code-base ontology, called a system model
(SM). Our solution then takes the form of a hid-
den markov model where emission probabilities
reflect the grammaticality and interpretability of
textual requirements via a probabilistic grammar,
and transition probabilities model the overlap be-
tween SM snapshots of the shared domain. Us-
ing efficient viterbi decoding, we search for the
best sequence of domain snapshots that has most
likely generated the document. We empirically
show that such an integrated model consistently
outperforms a sentence-based model learned from
the same data.

The remainder of this document is organized
as follows. In Section 2 we describe the task,
and spell out our assumptions concerning the in-
put and the output. In Section 3 we present our
target semantic represention, and a specially tai-
lored notion of grounding requirements in a code-
base. In Section 4 we develop our sentence-based
and discourse-based models, and in Section 5 we
compare the models on various case studies. Fi-
nally, in Section 6 we summarize and conclude.

2 Parsing Requirements Elicitation
Documents: Task Description

There is an inherent discrepancy between the input
and the output of software engineering processes.
The input, system requirements, is usually speci-
fied in a natural, informal, language. The output,
the system, is ultimately implemented in a formal

unambiguous programming language. Can we au-
tomatically recover a formal representation of a
complete system from a set of requirements? In
this work we explore this challenge empirically.

The Input. We assume a scenario-based pro-
gramming paradigm (a.k.a behavioral program-
ming (BP) (Harel et al., 2012)) in which system
development is seen as a process whereby hu-
mans describe the expected behavior of the sys-
tem by means of “short-stories”, formally called
scenarios (Harel, 2001). We further assume that
a given requirements document describes exactly
one system, and that each sentence in the docu-
ment describes a single, possibly complex, sce-
nario. The requirements we aim to parse are given
in a simplified form of English (specifically, the
English fragment described in Gordon and Harel
(2009)). Contrary to strictly formal specification
languages, this simplified variant of English al-
lows for an open domain lexicon and exhibits ex-
tensive syntactic and semantic ambiguity.1

The Output. Our target semantic representation
employs live sequence charts (LSC), a diagram-
matic formal language for scenario-based pro-
gramming (Damm and Harel, 2001). Formally,
LSCs are an extension of the well-known UML
message sequence diagrams (Harel and Maoz,
2006) and they have a direct translation into ex-
ecutable code (Harel et al., 2007).2 Using LSC di-
agrams for software modelling enjoys the advan-
tages of being easily learnable (Harel and Gordon-
Kiwkowitz, 2009), intuitively interpretable (Eitan
et al., 2011) and straightforwardly amenable to ex-
ecution (Harel et al., 2002) and verification (Harel
et al., 2013). The LSC language is particularly
suited for representing natural language require-
ments since its basic formal constructs, scenarios,
nicely align with events, the primitive objects of
Neo-Davidsonian Semantics (Parsons, 1990).

Live Sequence Charts and Code Artifacts. A
live sequence chart (LSC) is a diagram that de-
scribes a possible or necessary run of a specified
system. In a single LSC diagram, entities are rep-
resented as vertical lines called lifelines and inter-
actions between entities are represented using hor-
izontal arrows between lifelines called messages,

1Formally, this variant may be viewed as a CNL of degree
P2 E3 N4 S4 with properties C,F,W,A (Kuhn, 2014, pp 6-12).

2It can be shown that the execution semantics of the LSC
language is embedded in a fragment of a branching temporal
logic called CTL* (Kugler et al., 2005).

connecting a sender to a receiver. Messages may
refer to other entities (or properties of entities) as
arguments. Time in LSCs precedes from top to
bottom, imposing a partial order on the execution
of messages. LSC messages can be hot (red, “must
happen”) or cold (blue, “may happen”). A mes-
sage may have an execution status, which desig-
nates it as monitored (dashed arrow, “wait for”)
or executed (full arrow, “do”). The LSC language
also encompasses conditions and control struc-
tures, and it further allows defining requirements
in terms of negation of charts. Figure 1 illustrates
the LSC for the scenario “When the user clicks
the button, the display color must change to red.”
The respective SM would be a code-base hierarchy
containing the classes User, Button, Display, with
method Button.click and a property Display.color.

3 Formal Settings

In the text-to-code generation task we aim to
implement a function f : D → M where
D ∈ D is a piece of discourse consisting an or-
dered set of requirements D = d1, d2...dn, and
f(D) = M ∈ M is a code-base hierarchy
that grounds the semantic interpretation of D, i.e.,
M . sem(d1, ..., dn).

Both D,M are complex objects, that we now
define formally. Next we describe the semantic
interpretation function (sem(.)) and we then spell
out the definition of grounding (.).

Surface Structures: Let Σ be a finite lexicon
and let Lreq ⊆ Σ∗ be a language fragment for
specifying requirements. We assume the sentences
in Lreq have been generated by a context free
grammar G = 〈N ,Σ, S ∈ N ,R〉 where N is
a set of non-terminals, Σ is the aforementioned
lexicon, S ∈ N is a start symbol and R is a
set of context-free rules {A → α|A ∈ N , α ∈
(N ∪ Σ)∗}. For each utterance u ∈ Lreq we can
find a sequential application of rules that gener-
ates it u = r1 ◦ ... ◦ rk; ∀i : ri ∈ R. These
derivations are graphically depicted as parse trees,
with u defining the sequence of tree terminals in
the leaves. We define Treq to be the set of trees
strongly generated by G, and an auxiliary yield
function yield : Treq → Lreq returning the leaves
of a tree. Different parse-trees can generate the
same utterance, so the task of analysing the sur-
face structure of an utterance u ∈ Lreq is modeled
via a function syn : Lreq → Treq that returns the
correct, human-perceived, parse of u.

Semantic Structures: Our target semantic rep-
resentation of a requirement d ∈ Lreq, denoted
here sem(d) is a diagrammatic structure called a
live sequence chart (LSC), an event-based formal
representation for specifying requirements.

Let us assume that L is a dictionary of entities
(lifelines), A is a dictionary of actions, P is a dic-
tionary of attribute names and V a dictionary of
attribute values. The set of simple events in the
LSC formal system is defined as follows:

Eactive ⊂ L×A× L× (L× P × V)∗

×{hot, cold} × {executed,monitored}

where e = 〈l1, a, l2, {li : pi : vi}ki=3, temp, exe〉
and li ∈ L, a ∈ A, pi ∈ P, temp ∈ {hot, cold},
exe ∈ {executed,monitored}. The event e is
called a message in which an action a is carried
over from a sender l1 to a receiver l2.3 The set
{li : pi : vi}ki=3 depicts a set of attribute:value
pairs provided as arguments to action a. The tem-
perature temp marks the modality of the action
(may, must), and the status exe distinguishes ac-
tions to be taken from actions to be waited for.

An event e can also be a stative event, called a
condition, in which a logical expression is being
evaluated over a set of property:value pairs:

Estative ⊂ Exp× (L× P × V)∗

×{hot, cold} × {executed,monitored}

Specifically, e = 〈exp, {l : p : v}ki=0, temp, exe〉
is a stative event to be evaluated, where li ∈
L, pi ∈ P, vi ∈ V, temp ∈ {hot, cold}, exe ∈
{executed,monitored}. The condition exp ∈
Exp is a first-order logic formula using the usual
operators (∨,∧,→,¬). The set {l : p : v}ki=0 de-
picts a (possibly empty) set of attribute:value pairs
that participates as predicates in exp. Executing a
condition, that is, evaluating the logical expression
specified by exp, also has a modality (may/must)
and an execution status (performed/waited for).

The LSC language further allows us to define
arbitrarily complex events by combining partially
ordered sets of events with control structures.

Ecomplex ⊂ N × Estative×

{〈Ec, <〉|〈Ec, <〉 is a poset }
3The LSC language distinguishes static lifelines from dy-

namically bound lifelines. For brevity, we omit this from the
formal description of events, and simply assert that it may be
one of the properties of the relevant lifeline.

N is a set of non-negative integers,Estative is a set
of stative events as described above, and each el-
ement 〈Ec, <〉 is a partially ordered set of events.
This structure allows us to derive three kinds of
control structures:

• e = 〈#, ∅, 〈E,<〉〉 is a loop in which 〈E,<〉
is executed # times.

• e = 〈0, cond, 〈E,<〉〉 is a conditioned exe-
cution. If cond holds, 〈E,<〉 is executed.

• e = 〈#, {cond}#i=1, {〈Ec, <〉}
#
i=1〉 is a

switch: in case i, if the condition i holds,
〈Ec, <〉i is executed.

Definition 1 (LSC) An LSC is a partially or-
dered set of events c = 〈E,<〉 where

∀e ∈ E : e ∈ Eactive∨e ∈ Estative∨e ∈ Ecomplex

Grounded Semantics: The information repre-
sented in the LSC provides the recipe for a rig-
orous construction of the code-base that will im-
plement the program. This code-base is said to
ground the semantic representation. In this work
we suggest to explicitly model this code-base as
the document’s context. If our target programming
language is an OO language such as Java, then the
code-base will include the entities, methods, and
properties that are minimally required for execut-
ing the LSCs. We refer to this code-base using as
system model, or in short SM, as defined below.

Definition 2: (SM) Let Lm be a set of imple-
mented objects, Am a set of implemented meth-
ods, Pm a set of arguments and Vm argument val-
ues. Additionally we define auxiliary functions
methods : Am → Lm , props : Pm → Lm and
values : Vm → Lm×Pm for identifying the entity
which contains the implementation of the method,
the entity that contains the property, and the en-
tity attribute that bears that value, respectively. A
system model is a tuple m representing the imple-
mented architecture.

m = 〈Lm, Am, Pm, Vm,methods, props, values〉

Analogously to interpretation functions in logic
and natural language semantics we assume here an
implementation function denoted [[.]] which maps
each formal entity in the LSC semantic represen-
tation to its instantiation in the code-base. Using
this function we define a notion of grounding that
captures the fact that a certain code-base satisfies
the requirements of an LSC c.

Definition 3(a): (Grounding) LetM be the set
of system models and let C be the set of definable
LSC charts. We say that m grounds c = 〈E,<〉
and write m . c iff ∀e ∈ E : m . e. Where:

• if e ∈ Eactive then:
m . e⇔

[[l1]], [[l2]] ∈ L &
[[a]] ∈ methods([[l2]]) &
∀i : 〈l : p : v〉i ⇒ [[l]] ∈ Lm&[[p]] ∈
props[[l]]&v ∈ values([[l]], [[p]])

• if e ∈ Estative then:
m . e⇔
∀i : 〈l : p : v〉i ⇒ [[l]] ∈ Lm&[[p]] ∈
props[[l]]&v ∈ values([[l]], [[p]])

• if e = 〈#, es, 〈Ec, <〉 ∈ Ecomplex then:
m . e⇔m . es & ∀e′ ∈ Ec : m . e′

We have thus far defined how an SM grounds
the semantics of an LSC. In the real-world, how-
ever, a requirements document is interpreted as
a complete whole, conveying a single shared do-
main that satisfies all dynamic requirements. Let
us assume a requirements document containing n
requirements d = d1, d2, ..., dn; di ∈ Lreq. We
assume that sem(d) is a discourse interpretation
function that returns a single semantic represen-
tation for the document where identical elements
across sentences share the same reference. We fi-
nally assume that t is a unification operation, re-
turning the formal unification of two SMs if such
exists, and an empty SM otherwise. We can now
define grounding of a sequence of requirements.

Definition 3(b): (Grounding) Let d be a re-
quirements document and let M = 〈m,t〉 be a
sequence of models and a unification operation.
We say that M . sem(d) iff ∀i : mi . sem(di)
and ((m1 tm2).... tmn) . sem(d1,, dn).

The discourse semantic interpretation provided
by sem can be as simple as asserting that all
elements that have the same string name refer
to the same element (entity, action, etc), and it
can be as complex as taking into account syn-
onyms (“clicks the button” and “presses the but-
ton”), anaphora (“when the user clicks the button,
it changes colour”), binding (“when the user clicks
any button, this button is highlighted”), and so on.
In this work, we assume a simple discourse inter-
pretation function where entities, methods, proper-
ties and values that are referred to using the same
string refer to the same elements in the code-base.

This simple assumption already holds a sub-
stantial amount of disambiguating information
concerning individual requirements. For example,
assuming we have seen a “click” method over a
“button” object in sentence i, it may help us dis-
ambiguate future attachment ambiguity, favoring
structures where a “button” is attached to “click”
over other attachment alternatives. Our goal is
then to model discourse-level context for support-
ing accurate analysis of individual requirements.

4 Probabilistic Modeling

4.1 Sentence-Based Modeling
The task of our sentence-based model is to learn
a function that maps each requirement sentence
to its correct LSC diagram and SM snapshot.
In a nutshell, we do this via a (partially lexi-
calized) probabilistic context-free grammar aug-
mented with a semantic interpretation function.

More specifically, given a discourse D =
d1...dn we think of each di as having been gen-
erated by a CFG G. The syntactic analysis of di
may be ambiguous, so we first implement a syn-
tactic analysis function syn : Lreq → Treq using
a probabilistic model that selects the most likely
syntax tree t of each d individually. We can sim-
plify syn(d), with d constant with respect to the
maximization:

syn(d) = argmaxt∈TreqP (t|d)

= argmaxt∈Treq
P (t,d)
p(d)

= argmaxt∈TreqP (t, d)

= argmaxt∈{t|t∈Treq ,yield(t)=d}P (t)

We define a probability distribution over trees t ∈
Treq by augmenting G with a function P : R →
[0, 1] (for all rules of G it holds that

∑
α P (A →

α) = 1). Because of context-freeness we get that
P (t) =

∏
r∈der(t) P (r), where der(t) returns the

rules that derive t. The resulting probability dis-
tribution P : Treq → [0, 1] defines a probabilistic
language model over all requirements in Lreq.

Syntactic parse trees are complex entities, as-
signing structures to the flat sequences of words.
The principle of compositionality asserts that the
meaning of a complex syntactic entity is a func-
tion of the meaning of its parts and their mode of
combination. We assume a function sem : T → C
mapping trees to semantic constructs in the LSC
language. The semantics of a tree t ∈ Treq is
derived compositionally from the interpretation of
the rules in the grammar G. We overload the sem

notation to define sem : R → C as a function as-
signing rules to LSC constructs,4 with ◦̂ merging
the resulting sets of events. Our sentence-based
compositional semantics is summarized as:

sem(u) = sem(syn(u)) = sem(r1 ◦ ... ◦ rn) =

sem(r1)◦̂...◦̂sem(rn) = c1◦̂...◦̂cn = c

For a single chart c, one can easily construct an
implementation for every entity, action and prop-
erty in the chart. Then, by design, we get an
SM m such that m . c. To construct the SM of
the entire discourse in the sentence-based model
we simply return f(d1, ..., dn) = tni=1mi where
∀i : mi . sem(syn(di)).

4.2 Discourse-Based Modeling
We assume a given document D ∈ D and aim to
find the most probable system model M ∈ M
that satisfies the requirements. We assume that
M reflects a single domain that the stakeholders
have in mind, and we are given ambiguous natural
language evidence as elicited discourse in which
they convey it. We instantiate this view as a noisy
channel model (Shannon, 1948), which provides
the foundation for many NLP applications, such
as speech recognition (Bahl et al., 1983) and ma-
chine translation (Brown et al., 1993).

According to the noisy channel model, when a
signal is received it does not uniquely identify the
message being sent. A probabilistic model is then
used to decode the original message. In our case,
the signal is the discourse and the message is the
overall system model. In formal terms, we want to
find a model M that maximises the following:

f(D) = argmaxM∈MP (M |D)

We can simplify further using Bayes law, whereD
is constant with respect to the maximisation.

f(D) = argmaxM∈MP (M |D)

= argmaxM∈M
P (D|M)×P (M)

P (D)

= argmaxM∈MP (D|M)× P (M)

We would thus like to estimate two types of prob-
ability distributions, P (M) over the source and
P (D|M) over the channel.

4Here, it suffices to say that sem maps edges in
the syntax tree to functions in the API of an LSC ed-
itor. For example: sem(NP → DET NN) =
fCreateObject(DET.sem,NN.sem). We specify the
function sem completely in the supplementary materials.

BothM andD are structured objects with com-
plex internal structure. In order to assign distribu-
tion to events involving such complex structures
it is customary to break the complex events down
into simpler, more basic events. We know that
D = d1, d2, ..., dn is composed of n individual
sentences, each representing a certain aspect of the
model M . We assume a sequence of snapshots of
M that correspond to the timestamps 1...n, that is:
m1,m2, ...,mn ∈ M where ∀i : mi . sem(di).
The complete SM is given by the union of the
different snapshots reflected in different require-
ments, i.e., M =

⊔
imi. We then rephrase:

P (M) = P (m1, ...,mn)
P (D|M) = P (d1,, dn|m1, ...,mn)

These events may be seen as points in a high di-
mensional space. In actuality, they are too com-
plex and would be too hard to estimate directly.
We then define two independence assumptions.
First, we assume that a system model snapshot at
time i depends only on a fixed k previous snap-
shots (a stationary distribution). Secondly, we as-
sume that each sentence i depends only on the SM
snapshot at time i. We now get:

P (m1...mn) ≈
∏
i P (mi|mi−1...mi−k)

P (d1...dn|m1...mn) ≈
∏
i P (di|mi)

Furthermore, assuming bi-gram transitions, our
objective function is now represented as follows:

f(D) = argmaxM∈M

n∏
i=1

P (mi|mi−1)P (di|mi)

Note that m0 may be empty if the system is im-
plemented from scratch, and non-empty if the re-
quirements assume an existing code-base, which
makes p(m1|m0) a non-trivial starting point.

4.3 Training and Inference
Our model is in essence a Hidden Markov Model
in which state-transition probabilities model tran-
sitions between SM snapshots and emission prob-
abilities model the verbal description of each state.
To implement this, we need to implement two
different algorithms. A decoding algorithm that
searches through all possible state sequences, and
a training algorithm that can automatically learn
the values of the, still rather complex, parameters
P (mi|mi−1), P (di|mi) from corpora.

f(D) = argmaxM∈M︸ ︷︷ ︸
decoding

n∏
i=1

P (mi|mi−1)P (di|mi)︸ ︷︷ ︸
training

Training: We assume a supervised training set-
ting in which we are given a set of examples an-
notated by a human expert. For instance, these
can be requirements an analyst has formulated and
encoded using an LSC editor, providing disam-
biguating information by hand.

We are provided with a set of pairs {Di,Mi}ni=1

containing n documents, where each of the
pairs in i = 1..n is represented as a tuple-set
{dij , tij , cij ,mij}ni

j=1. For all i, j it holds that
tij = syn(dij), cij = sem(tij), and mij .
sem(syn(dij)). The union of the SM snapshots
yields the entire model tjmij = Mi, that satisfies
the set of requirements Mi . sem(di1, ..., dini).

(i) Emission Parameters Our emission parame-
ters P (di|mi) represent the probability of a verbal
description given an SM snapshot which grounds
the semantics of the sentence. A single SM may
result from different syntactic derivations of a sen-
tence. We calculate this probability by marginaliz-
ing out the syntactic trees that are grounded in the
same SM snapshot.

P (d,m)

P (m)
=

∑
t∈{t|yield(t)=d,m.sem(t)} P (t)∑
t∈{t|t∈Treq ,m.sem(t)} P (t)

The probability of P (t) is estimated using a tree-
bank PCFG (Charniak, 1996) based on all pairs
〈dij , tij〉 in the annotated corpus. We estimate
rule probabilities using maximum-likelihood esti-
mates and use simple smoothing for unknown lex-
ical items using rare-words distributions.

(ii) Transition Parameters Our transition pa-
rameters P (mi|mi−1) represent the amount of
overlap between the SM snapshots. We look at the
current and the previous system model, and aim to
estimate how likely the current SM is, given the
previous one. There are different assumptions that
may underly this probability distribution, reflect-
ing different principles of human communication.
We first define a generic estimator as follows:

P̂ (mi|mj) =
gap(mi,mj)∑
mj
gap(mi,mj)

where gap(.) quantifies the information sharing
between SM snapshots. Regardless of the im-
plementation of gap, it can be easily shown that
P̂ is a conditional probability distribution where
P̂ : M × M → [0, 1] and, for all mi,mj , :∑
mj
P̂ (mi|mj) = 1. For efficiency,M is the re-

stricted universe considered via inference, below.

Transition: gap(mcurr,mprev)

max-overlap |set(mcurr)∩set(mprev)|
|set(mcurr)|

max-expansion 1− |set(mcurr)∩set(mprev)|
|set(mprev)∪set(mcurr)|

min-distance 1− ted(mprev ,mcurr)
|set(mprev)|+|set(mcurr)|

Table 1: Quantifying the gap between snapshots.
set(mi) is a set of nodes marked by path to root.

We define different gap implementations, re-
flecting different assumptions about the discourse.
Our first assumption here is that different SM
snapshots refer to the same conceptual world, so
there should be a large overlap between them. We
call this the max-overlap assumption. A second
assumption is that in collaborative communication
a new requirement will only be stated if it pro-
vides new information, akin to Grice (1975). This
is the max-expansion assumption. An additional
assumption prefers “easy” transitions over “hard”
ones, this is the min-distance assumption. The
different gap calculations are listed in Table 1.

Inference An input document contains n re-
quirements. Our decoding algorithm considers the
N-best syntactic analyses for each requirement. At
each time step i = 1...n we assume N states rep-
resenting the semantics of the N best syntax trees.
Thus, setting N = 1 is equal to a sentence-based
model in which for each sentence we simply se-
lect the most likely tree according to a probabilis-
tic grammar, and construct a semantic representa-
tion for it.

For each document of length n, we assume
that our entire universe of system models M is
composed of N × n snapshots reflecting N × n
most likely analyses of sentences as provided by
the probabilistic syntactic model. (As shall be
seen shortly, even with this simplifying assump-
tion concerning the size of our universe M, our
discourse-based model provides substantial im-
provements over a sentence-based model).5

Our discourse based model is an HMM where
each requirement is an observed signal, and each
i=1..N is a state representing the SM that grounds
the i th best tree. Because of the Markov inde-

5This restriction is akin to pseudo-likelihood estimation,
as in Arnold and Strauss (1991). In pseudo-likelihood estima-
tion, instead of normalizing over the entire set of elements,
one uses a subset that reflects only the possible outcomes.
Here, instead of summing SM probabilities over all possible
sentences in the language, we sum up alternative SM analyses
of the observed sentences in the document only. This estima-
tion could also be addressed via, e.g., sampling methods.

pendence assumption our setup satisfies the opti-
mal subproblem and overlapping problem prop-
erties and we can use efficient viterbi decoding
to exhaustively search through the different state
sequences, and find the most probable sequence
that has generated the sequence of requirements
according to our probabilistic model.

The overall complexity of the decoder for a re-
quirements document with n sentences of which
max length is l, a grammar G of size |G|, and a
constant N is given by the following expression:

O(n3 ×N2 + n× l3 × |G|3 + l2 × n×N)

We can break this expression down as follows: (i)
In O(n × l3 × |G|3) we generate N best trees
for each one of the n requirements, using CKY
(Younger, 1967). (ii) In O(l2 ×N × n) we create
the universe M based on the N best trees of the
n requirements, and (iii) In O((N × n)2 × n) =
O(N2 × n3) we decode using Viterbi (1967).

5 Experiments

Goal. We set out to evaluate the accuracy of rep-
resenting and grounding the semantics of require-
ments documents in the two new modes of analy-
sis. Our evaluation methodology is as standardly
assumed in machine learning and in NLP. Given
a set of annotated examples, we divide them into
disjoint training set and test set. We train our sta-
tistical model on a set of training documents and
predict the semantic analysis of the test require-
ments documents. We then compare the predicted
structures to the gold semantic analyses of the test
documents in order to empirically quantify our
prediction error.

Metrics. Our semantic LSC objects in the sys-
tem are formally synset trees. Therefore, we can
use standard tree evaluation metrics, such as the
ParseEval scores (Black et al., 1992). Overall, we
evaluate the accuracy of the LSC representations
using three metrics:

POS: the percentage of part-of-speech tags
predicted correctly.
LSC-F1: the harmonic means of precision
and recall on the tree.
LSC-EM: 1 if the predicted tree is an exact
match to the gold tree, 0 otherwise.

In the case of SM trees, as opposed to the LSC
trees, we can not assume identity of the yield be-
tween the gold and parse trees so we cannot use

System #Scenarios avg sentence length
Phone 21 24.33
WristWatch 15 29.8
Chess 18 15.83
Baby Monitor 14 20
Total 68 22.395

Table 2: Seed Gold-Annotated Requirements

ParseEval. Therefore, we implement a distance-
based metrics in the spirit of Tsarfaty et al. (2012).
Then, to evaluate the accuracy of the SM represen-
tation we use two kinds of scores:

SM-F1: the normalized edit distance be-
tween the gold and predicted SM trees, sub-
tracted from a unity.
SM-EM: 1 if the predicted SM is an exact
match with the gold SM, and 0 otherwise.

Data. We have a small seed of correctly anno-
tated requirements-specification case studies that
describe simple reactive systems in the LSC lan-
guage. Each document is annotated with the cor-
rect LSC sequence and is grounded in a java im-
plementation. We use the case studies provided by
Gordon and Harel (2009). Table 2 lists the case
studies and basic statistics concerning these data.

As our annotated seed is quitte small, it is hard
to generalize from it to unseen examples. In par-
ticular, we are not guaranteed to have observed all
possible structures that are theoretically permit-
ted by the assumed grammar. To cope with that,
we create a synthesis set of examples using the
grammar of Gordon and Harel (2009) in genera-
tion mode, and randomly generate trees t ∈ Treq.
We assume a grammar with a fixed functional lexi-
con and an open set of nouns, verbs and adjectives.

The grammarGwe use to generate the synthetic
examples clearly over-generates. That is, it cre-
ates many trees that do not have a sound interpre-
tation. In fact, according to our semantic inter-
pretation function, only 3000 our of 10000 gener-
ated examples have a sound semantic interpreta-
tion grounded in an SM. Nonetheless, these data
allow us to smooth the syntactic distributions that
are observed from the seed alone.

Results. Our first experiment aims to evaluate
the sentence-based model using our small seed and
large set of synthetic examples. Table 3 presents
our results for parsing the Phone document, our
development set. We see that despite the small
size of our seed, adding this seed to our training
of emission parameters substantially improves re-
sults over a model trained on synthetic examples.

Table 4 presents the results of the discourse-
based model for N > 1 on the Phone example.
We first present the results of an Oracle experi-
ment, wherein for every requirement we select the
highest scoring tree in terms of the LSC-F1. The
initial ranking is provided by a PCFG learned from
our seed set interpolated with a PCFG learned
from the synthetic examples (99/1). This experi-
ment provides an upper bound on the results we
can get for each N value. Next we present the
results of our discourse based model with PCFG
learned from only synthetic trees, but incorpo-
rate transitions obeying the max-overlap assump-
tion. Already here, we see mild improvement for
N > 1 relative to the N = 1 results, indicat-
ing that even a weak signal such as overlap be-
tween the domains of neighboring sentences al-
ready improves sentence disambiguation in con-
text. The third part of the table lists the results of
the discourse-based model where the PCFG inter-
polates the seed as well as synthetic-set like be-
fore. The transitions are estimated to reflect the
max-overlap assumptions. Here, we see substan-
tial improvements over the synthetic-only PCFG.
That is, modeling grammaticality of individual re-
quirements helps interpreting the document.

In our next experiment we compare different
implementations of gap(mi,mj). We estimate
probability distributions that reflect each of the
assumptions we discussed, and add an additional
method called hybrid, in which we interpolate
the max-expansion and max-overlap estimates
(equal weights) — aiming to capture two assump-
tions about discourse at the same time. In Table 6
the trend from the previous experiment persists.
Notably, the hybrid model provides a larger error
reduction than its components used separately, in-
dicating that to capture discourse context we may
need to balance possibly conflicting factors.

We finally perform a cross-fold experiment in
which we leave one document out as a test and
make the rest our seed. The results are provided in
Table 5. The discourse-based model outperforms
the sentence based model N = 1 in all cases.
Moreover, the drop in N = 128 for Phone seems
to be incidental to this set, and the other cases level
off before that. Despite our small seed, the per-
sistent improvement on all metrics is consistent
with our hypothesis that modeling the interpreta-
tion process within the discourse has substantial
benefits for automatic understanding of the text.

N=1 POS LSC-F1 LSC-EM SM-TED SM-EM
Gen-Only 85.52 84.40 9.52 84.25 9.52
Gen+Seed 91.59 88.05 14.29 85.17 14.29

Table 3: Sentence-Based modeling: Accuracy re-
sults on the Phone development set.

System N=2 4 8 16 32 64 128
Oracle

POS 91.98 93.54 94.91 95.30 96.09 96.67 96.87
LSC-F1 88.73 91.33 93.19 94.39 95.11 95.91 96.70

LSC-EM 23.81 42.86 61.90 61.90 66.67 76.19 76.19
SM-TED 86.54 91.28 94.28 94.88 96.24 97.51 98.80
SM-EM 23.81 42.86 66.67 71.43 76.19 76.19 76.19

Gen-Only
POS 85.52 86.30 87.67 88.45 88.85 88.85 88.85

LSC-F1 84.40 85.35 86.31 87.51 88.81 89.30 89.51
LSC-EM 9.52 9.52 14.29 14.29 14.29 14.29 14.29
SM-TED 84.25 85.94 89.14 91.90 92.81 93.31 92.70
SM-EM 9.52 19.05 33.33 33.33 33.33 38.10 33.33

Gen+Seed
POS 91.78 92.95 93.54 93.35 94.32 94.52 93.93

LSC-F1 88.11 90.18 91.00 90.99 91.81 92.09 91.73
LSC-EM 19.05 38.10 42.86 42.86 42.86 42.86 42.86
SM-TED 85.49 90.78 93.59 93.02 94.81 95.69 93.76
SM-EM 19.05 38.10 52.38 52.38 52.38 52.38 52.38

Table 4: Discourse-Based Modeling: Accuracy re-
sults on the Phone dev set. The Oracle experiment
selects the highest scoring LSC tree among the N-
candidates, providing an accuracy upper bound.
Gen-Only selects the most probable tree, rely-
ing on synthetic examples only, providing a lower
bound. Gen+Seed adds an annotated seed for an
improved acquired probabilistic grammar, provid-
ing a strong baseline for the task.

Data Set N=1 32 64 128
Baby Monitor

POS 94.29 96.07 96.07 96.07
LSC-F1 91.50 94.96 94.96 94.96

LSC-EM 14.29 21.43 21.43 21.43
SM-TED 88.63 91.11 91.11 91.11
SM-EM 28.57 50.00 50.00 50.00

Chess
POS 92.63 93.68 93.68 93.68

LSC-F1 95.79 96.16 96.16 96.16
LSC-EM 5.56 11.11 11.11 11.11
SM-TED 94.90 97.10 97.10 97.10
SM-EM 61.11 66.67 66.67 66.67

Phone
POS 91.59 94.72 94.91 94.32

LSC-F1 88.05 92.15 92.42 92.07
LSC-EM 14.29 47.62 47.62 47.62
SM-TED 85.17 94.87 95.75 93.83
SM-EM 14.29 57.14 57.14 57.14

WristWatch
POS 34.23 34.45 34.45 34.45

LSC-F1 50.06 51.05 51.05 51.05
LSC-EM 26.67 26.67 26.67 26.67
SM-TED 71.15 72.73 72.73 72.73
SM-EM 26.67 33.33 33.33 33.33

Table 5: Cross-Fold Validation for N=1, 32, 64,
128. For the Seed+Generated trained system, with
the Hybrid transition parameters.

Transitions N=2 4 8 16 32 64 128
No Transitions

POS 91.78 92.56 93.35 93.15 94.32 94.52 93.93
LSC-F1 88.11 89.49 90.67 90.66 91.81 92.09 91.73

LSC-EM 19.05 38.10 42.86 42.86 42.86 42.86 42.86
SM-TED 85.49 90.76 93.68 93.11 94.81 95.69 93.76
SM-EM 19.05 38.10 52.38 52.38 52.38 52.38 52.38

Min Dist
POS 91.98 92.76 93.54 93.35 94.32 94.52 93.93

LSC-F1 88.39 89.77 91.00 90.99 91.81 92.09 91.73
LSC-EM 23.81 42.86 47.62 47.62 47.62 47.62 47.62
SM-TED 86.54 91.71 94.38 93.81 95.57 96.43 94.53
SM-EM 23.81 42.86 57.14 57.14 57.14 57.14 57.14

Max Overlap
POS 91.78 92.95 93.54 93.35 94.32 94.52 93.93

LSC-F1 88.11 90.18 91.00 90.99 91.81 92.09 91.73
LSC-EM 19.05 38.10 42.86 42.86 42.86 42.86 42.86
SM-TED 85.49 90.78 93.59 93.02 94.81 95.69 93.76
SM-EM 19.05 38.10 52.38 52.38 52.38 52.38 52.38

Max Expand
POS 91.98 92.76 93.74 93.54 94.32 94.52 93.93

LSC-F1 88.39 89.71 91.00 90.99 91.68 91.96 91.60
LSC-EM 23.81 42.86 47.62 47.62 47.62 47.62 47.62
SM-TED 86.54 91.93 93.75 93.18 94.79 95.66 93.75
SM-EM 23.81 42.86 57.14 57.14 57.14 57.14 57.14
Hybrid

POS 91.78 92.95 93.93 93.74 94.72 94.91 94.32
LSC-F1 88.11 90.18 91.34 91.33 92.15 92.42 92.07

LSC-EM 19.05 38.10 47.62 47.62 47.62 47.62 47.62
SM-TED 85.49 90.78 93.66 93.09 94.87 95.75 93.83
SM-EM 19.05 38.10 57.14 57.14 57.14 57.14 57.14

No Emissions
POS 91.78 91.98 92.37 92.37 92.17 92.76 93.15

LSC-F1 88.11 88.79 89.12 89.12 89.39 89.67 89.89
LSC-EM 19.05 19.05 23.81 23.81 23.81 23.81 23.81
SM-TED 85.49 85.74 85.82 85.82 85.87 86.85 86.92
SM-EM 19.05 19.05 23.81 23.81 23.81 23.81 23.81

Table 6: Discourse-Based modeling: Experiments
on the Phone development set. Estimation proce-
dure for transition probabilities. All experiments
use the Gen+Seed emission probablities.

6 Conclusion

The requirements understanding task presents an
exciting challenge to CL/NLP. We ought to auto-
matically recover the entities in the discourse, the
actions they take, conditions, temporal constraints,
and execution modalities. Furthermore, it requires
us to extract a single ontology that satisfies all in-
dividual requirements. The contribution of this
paper is three-fold: we formalize the text-to-code
prediction task, propose a semantic representation
with well-defined grounding into code, and empir-
ically evaluate models on the discourse-to-system
prediction. We show consistent improvement of
discourse-based over sentence-based models, in
several case studies. In the future we intend to
extend this model for interpreting requirements in
un-restricted or less-restricted English, endowed
with a more sophisticated discourse interpretation
function.6

6All of our code, data, annotated case studies, and a visual
editor for annotating LSCs, will be made publicly available.

References
B. C. Arnold and D. Strauss. 1991. Pseudolikelihood

Estimation: Some Examples. Sankhyā: The Indian
Journal of Statistics, Series B (1960-2002), 53(2).

Y. Artzi and L. Zettlemoyer. 2013. Weakly super-
vised learning of semantic parsers for mapping in-
structions to actions. TACL, 1:49–62.

L. R. Bahl, F. Jelinek, and R. L. Mercer. 1983. A
maximum likelihood approach to continuous speech
recognition. IEEE Trans. Pattern Anal. Mach. In-
tell., 5(2):179–190.

E. Black, J. D. Lafferty, and S. Roukos. 1992. Devel-
opment and evaluation of a broad-coverage proba-
bilistic grammar of english-language computer man-
uals. In ACL, pages 185–192.

P. F. Brown, V. J. Della Pietra, S. A. Della Pietra, and
R. L. Mercer. 1993. The mathematics of statistical
machine translation: Parameter estimation. Comput.
Linguist., 19(2):263–311, June.

B. Bryant and B.-S. Lee. 2002. Two-level gram-
mar as an object-oriented requirements specifica-
tion language. In Proceedings of the 35th Annual
Hawaii International Conference on System Sci-
ences (HICSS’02)-Volume 9 - Volume 9, HICSS ’02,
pages 280–, Washington, DC, USA. IEEE Computer
Society.

E. Charniak. 1996. Tree-bank grammars. In In Pro-
ceedings of the Thirteenth National Conference on
Artificial Intelligence, pages 1031–1036.

W. Damm and D. Harel. 2001. Lscs: Breathing life
into message sequence charts. Form. Methods Syst.
Des., 19(1):45–80, July.

Nir Eitan, Michal Gordon, David Harel, Assaf Marron,
and Gera Weiss. 2011. On visualization and com-
prehension of scenario-based programs. In Proceed-
ings of the 2011 IEEE 19th International Conference
on Program Comprehension, ICPC ’11, pages 189–
192, Washington, DC, USA. IEEE Computer Soci-
ety.

N. E. Fuchs and R. Schwitter. 1995. Attempto: Con-
trolled natural language for requirements specifica-
tions. In Markus P. J. Fromherz, Marc Kirschen-
baum, and Anthony J. Kusalik, editors, LPE.

M. Gordon and D. Harel. 2009. Generating executable
scenarios from natural language. In Proceedings of
the 10th International Conference on Computational
Linguistics and Intelligent Text Processing, CICLing
’09, pages 456–467, Berlin, Heidelberg. Springer-
Verlag.

H. P. Grice. 1975. Logic and conversation. In P. Cole
and J. L. Morgan, editors, Syntax and Semantics:
Vol. 3: Speech Acts, pages 41–58. Academic Press,
San Diego, CA.

D. Harel and M. Gordon-Kiwkowitz. 2009. On teach-
ing visual formalisms. IEEE Softw., 26(3):87–95,
May.

D. Harel and S. Maoz. 2006. Assert and negate revis-
ited: Modal semantics for uml sequence diagrams.
In Proceedings of the 2006 International Workshop
on Scenarios and State Machines: Models, Algo-
rithms, and Tools, SCESM ’06, pages 13–20, New
York, NY, USA. ACM.

D. Harel and R. Marelly. 2003. Come, Let’s Play:
Scenario-Based Programming Using LSC’s and the
Play-Engine. Springer-Verlag New York, Inc., Se-
caucus, NJ, USA.

D. Harel, H. Kugler, R. Marelly, and A. Pnueli. 2002.
Smart play-out of behavioral requirements. In Pro-
ceedings of the 4th International Conference on For-
mal Methods in Computer-Aided Design, FMCAD
’02, pages 378–398, London, UK, UK. Springer-
Verlag.

D. Harel, A. Kleinbort, and S. Maoz. 2007. S2a: A
compiler for multi-modal uml sequence diagrams.
In In Proc. Fundamental Approaches to Software
Engineering (FASE’07), volume 4422 of LNCS,
pages 121–124. Springer.

D. Harel, A. Marron, and G. Weiss. 2012. Behavioral
programming. Commun. ACM, 55(7):90–100, July.

D. Harel, A. Kantor, G. Katz, A. Marron, L. Mizrahi,
and G. Weiss. 2013. On composing and proving
the correctness of reactive behavior. In Embedded
Software (EMSOFT), 2013 Proceedings of the Inter-
national Conference on, pages 1–10, Sept.

D. Harel. 2001. From play-in scenarios to code: An
achievable dream. Computer, 34(1):53–60, January.

H. Kugler, D. Harel, A. Pnueli, Y. Lu, and Y. Bon-
temps. 2005. Temporal logic for scenario-based
specifications. In Proceedings of the 11th In-
ternational Conference on Tools and Algorithms
for the Construction and Analysis of Systems,
TACAS’05, pages 445–460, Berlin, Heidelberg.
Springer-Verlag.

T. Kuhn. 2014. A survey and classification of con-
trolled natural languages. Computational Linguis-
tics, 40(1):121–170.

T. Lei, F. Long, R. Barzilay, and M. C. Rinard. 2013.
From natural language specifications to program in-
put parsers. In ACL (1), pages 1294–1303.

P. Liang and C. Potts. 2014. Bringing machine learn-
ing and compositional semantics together. Annual
Reviews of Linguistics (submitted), 0.

P. Liang, M. I. Jordan, and D. Klein. 2011. Learn-
ing dependency-based compositional semantics. In
Association for Computational Linguistics (ACL),
pages 590–599.

T. Parsons. 1990. Events in the Semantics of English:
A study in subatomic semantics. MIT Press, Cam-
bridge, MA.

C. Shannon. 1948. A mathematical theory of com-
munication. Bell System Technical Journal, 27:379–
423, 623–656, July, October.

R. Tsarfaty, J. Nivre, and E. Andersson. 2012. Cross-
framework evaluation for statistical parsing. In
W. Daelemans, M. Lapata, and L. Màrquez, editors,
EACL, pages 44–54. The Association for Computer
Linguistics.

A. Viterbi. 1967. Error bounds for convolutional codes
and an asymptotically optimum decoding algorithm.
IEEE Trans. Inf. Theor.

D. H. Younger. 1967. Recognition and parsing of
context-free languages in time n3. Information and
Control, 10(2):189–208.

L. S. Zettlemoyer and M. Collins. 2005. Learning to
map sentences to logical form: Structured classifica-
tion with probabilistic categorial grammars. In UAI,
pages 658–666. AUAI Press.

