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Context modeling in distributional similarity
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Leveraging the power of language models:

Initial attempts to leverage joint-contexts
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Main evaluation setting:

Learning corpus: 100M words from Reuters RCV1

PrOba biIiStiC DiStribUtiOnaI Similarity (PDS) Gold standard: WordNet synonyms and semantic neighbors

Compared models:

PDS is designed to Model Params
model joint-contexts IFV wk Independent Feature Vector PPMI
Language Model .
“Plug-in” CFV Wk Composite Feature Vector Vector cosine

Not a vector-space model

SKIP Wk Skip-gram word embeddings Neg sampling 15

CBOW wk  CBOW word embeddings Dimensions 600

A probabilistic approach Probabilistic Vector cosine

Distributional "
Similarity (PDS) PDS
Scheme

PDS + Kneser-Ney n-gram LM n=k+1

Leverages the power of
Language Models

VerbSim ranking
spearman correlations
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