Learning Context Selection Models for Knowledge-Based WSD

Evgenia Wasserman Pritsker, Einat Minkov and William W. Cohen

Background

Word sense disambiguation (WSD): Determine which sense, out of known senses, is invoked in a given context, e.g., **STAR**:

Supervised WSD: highly effective, but requires large amounts of sense-tagged examples. Learns contextual cues.

Knowledge-based WSD: use lexico-semantic resources -- find the sense that agrees most with the given context. No annotated data required! Typically, considers all words surrounding the target word within a pre-defined window size.

Learning

- *Supervised*: dataset of context-target word pairs.
- Noisy labels: indicate whether sense prediction given the context word is correct.
- Unbalanced datasets (most examples are negative). Good results obtained using Naïve Bayes.

Explicit lexical information not encoded into the features. \rightarrow The learned models general rather than word-specific. \rightarrow The learned models fit within unsupervised KB WSD settings.

Inference - rank available context words using the learned model; aggregate the predictions of the best ones.

Context Features

- **Distance**: direct word distance
- Syntactic: target-context dependency relation path, path

Our goal: improve WSD performance by identifying <u>informative</u> contextual cues.

Any real **star** - which would never be perfectly **spherical** - could therefore only **collapse** to form a **naked singularity**.

Main contributions

- A learning framework for context selection.
- Statistically significant and consistent gains on benchmark WSD datasets.
- Performance comparable with, or exceeding, state-of-the-art.
- Found that lexico-statistical information (PMI, IDF) provides the strongest evidence (vs. traditional distance).

Framework

Learning framework that evaluates the reliability of each context word.

 $\underset{s \in S(w)}{\operatorname{arg\,max}} \sum_{c_j \in Ctx} \underbrace{weight(c_j)}_{Sim(s,c_j)} Sim(s,c_j)$

S(w) – candidate senses
Sim(.) - a similarity function
Ctx – context represented as a bag-of-words

- Assign weights according to relevancy of the context word.
- In this work, boolean weight: unreliable context words ignored:

- length, POS tag of context word
- Word properties: target-context PMI score; context word IDF score; context word number of senses

Datasets

 Lexical sample due to Koeling *et al* ('05). Annotated examples for 41 nouns – 300 sentences each, extracted from domain-specific (sports/finance) and general (BNC) texts. 7 senses on average. Derived 121K target-context word pairs.

All-words Senseval2&3.

Results				
Method	All	BNC	Sports	Finance
PPR	0.49	0.49	0.44	0.55
Context Selection	0.51*	0.50	0.46	0.57
Gloss Vectors	0.39	0.38	0.36	0.42
Context Selection	0.41*	0.40	0.38	0.45
* Statistically significant results		50%	50% top ranked words used	
Kooling	at al (OE) low	vical camp	la datacat [ra	

Koeling et al ('05) lexical sample dataset [recall]

weight(c_i)=0; otherwise: 1

KB WSD Methods

- *Lesk* (1986) *Sim(s,c)* = word overlap between the dictionary glosses of the context word and the candidate sense gloss.
- Gloss Vectors (GV) (Patwardhan Pedersen, `06) extended Lesk (glosses extended with related synsets glosses and co-occurring words derived from row text).
- Personalized PageRank (PPR) (Agirre and Soroa, `09) model WordNet as a graph; Sim(s,c) = graph-based similarity (random walks) between the nodes representing the senses of the context word and the target sense.

Robustness

The research was funded by BSF.