Clustering Moderate-size Collections

of Short Texts

Lili Kotlerman, ldo Dagan and Oren Kurland
Bar Ilan University Technion

Results (pairwise F1)

Motivation: industrial application of State-of-the-art methods
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Conclusions

V Four new datasets (will be published)

V Analysis of the datasets with
clustering in mind

V New method, improved performance

V Clustering tool will be made publicly
available
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V Texts are bag-of-clusters vectors
(features are term clusters like above)
V Use TF-DF rather than TF-IDF weighting

V Truncate the vectors to top-F features
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